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3dlta.,ta and 3,11-/.1t0 coupling constants were measured for isotopieally labeled FKBP when bound to the immmaomppressant, a.~omycin, uain 8 a 
tH-eoupled 3D HCCH-TOCSY and ~N-coupled 3D HSQC.TOCSY experiment, respectively. From an analysis of these two sets of  coupling 
constants, stereospecific/J-proton a~signments and gi rotamers for FKBP have been obtained. All of thegl retainers were consistent with thegl 
angl¢~ measured in the X-ray crystal structure of the FKBP/FKS06 complex, suggesting that the structures of the two complexes are shnilar. 
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1. INTRODUCTION 

The a~uracy and precision of 3D structures deter- 
mined by NMR have dramatically improved in the last 
few years [1]. These improvements are largely due to an 
increase in the number of proton-proton distance con- 
straints obtained from N e E  data. Although homonu. 
clear and heteronuclear three-bond coupling constants 
could also be used to obtain additional dihedral angle 
constraints to further improve the quality of structures 
determined by NMR., it is difficult to obtain these 2.. 
couplings in large systems due to the broad linewidths 
of the NMR signals and spectral overlap. Recently, 
elegant experimental approaches have been devised to 
overcome some of the limitations for measuring ./-cou- 
plings in large molecules [2-7]. However, only a few 
selected examples of coupling constants have been 
measured using these techniques, and in many cases, no 
useful applications of the methods have been reported. 

In this paper, we describe a 3D NMR. method for 
measuring three-bond proton-proton coupling con- 
stants in t~C-labeled proteins that is based on previously 
reported 2D NMP, experiments [5,6]. Using this tech- 
nique, we have measured the 3d, a,rra coupling constants 

Abbreviations: NeE, nuclear Overhauser effect; FKBP, FKS06 bind- 
ing protein; 3D HSQC-TOCSY, three.dimensional heteronnelear sin- 
gle quantum correlation-total correlation spectros:opy; 3D HCCH- 
TOCSY, three-dimensional tH-tSC-]aC-tH correlation 'via ~C total 
correlation .~peetre~copy; E.COSY, exclusive correlation spectros- 
copy. 
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for [U-tSN)bC]FKBP (FKS06 binding protein; 11.8 
kDa) [8,9] when bound to the irmnunosuppressant, as- 
comycin [10,11]. In addition, we have measured the 
3Jr~.a~ coupling constants in the [U-t~N]FKBP/aseomy - 
cin complex using a 15N-coupled 3D HSQC-TOCSY 
experiment [2]. From an analysis of these two sets of 
coupling constants, the stereospeeifi¢ assignments for 
most of the fl-protons of FKBP have been determined 
which is important for accurately interpreting the NOEs 
involving these protons. In addition, z l  rotamers con- 
sistent with the coupling constants were obtained, pro- 
viding additionRl restraints for the structure determina- 
tion ofthe FKBP/a~comycin complex. The2'l rotamers 
determined by NMR for the FKBP/aseomycin complex 
in solution were compared to thez1 angles determined 
in the X-ray crystal structure of the FKBP/FK506 com- 
plex [12]. 

2. MATERIALS AND METHODS 

2.1. Materials 
Recombinant human FKBP was cloned from a Jurat T ¢¢11 eDNA 

library and expressed in E. colt using the PKK233.3 vector containing 
a trc promoter [13]. [U-t~N]FKBP was prepared by growing ceils on 
a minimal medimu containing tsM ammonium chloride as the nitrogen 
source, and [U-t~N)bC]FKBP was prepared from cells grown on t~N 
ammonium chloride and [O-t~C]acetat¢. FKBP was purified from 
these cells as previously described [13]. 

2.2. NMR satnple preparation 
The NMR samples (3 raM) ofthe uniformly t~N and tSN,t3C FKBP/ 

a.~comycin complex were prepared in an H20 or DuO buffer (pH 6.5), 
respectively, containing 50 ram pota~ium phosphate, !00 mM so. 
dium chloride, and 5 mM dithiothreitol-dm. To form the complex, 
¢,~¢¢ss unlabeled a.~comycin was incubated with the protein solution 
for 24.-48 h at room tcmperat~'e. 
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2.2 NMR experimet)ts 
The NMR data were acquired on a Braker AMXS00 (500 MHz) 

NMR spectrometer at 30°C and processed using in-housc written 
software on Silicon Graphics computers. Linear Prediction was em- 
ployed to improve windowing and resolution in the indirect detected 
dimensions [14]. The time domain data in the indirect detected dirnel:. 
sions was extended by one quarter of the number of experimental 
points. Data sets were extensively zero filled to aid in the interpolation 
of the peak positions. 

The 3dl.ia,Ha coupling constants were measured using a tH-coupled 
3D HCCH-TOCSY experiment [15] in which a small flip angle pulse 
was used in the r©vers~ INEPT part of the experiment as shown in Fig. 
IA. The data set contained 47(t~) × 48(t:) x 1024(h) complex points 
which were acquired using spectral widths of 3704 Hz (ah, tH), 4167 
Hz (oJ,, ~3C). and 8333 Hz (o~j, tH). The co, dimension was folded once. 
The final data set size after zero-filling was 128(cot) × 256(oj,) 
8192(oJ~) points, giving a final digital resolution in oJ~ of 1.0 Hz per 
point. A DIPSI-2 [16] spinloek mixing period of 7.8 ms, and ar t ,  r: 
value of 1.5 ms was elnployed. Thirty.two t~ansients were accumulated 
per increment with a 1.1 s relaxation delay between scans. The total 
accumulation time was 3.S days. 

The ~dr~.M coupling constants were measured using a tSN.coupled 
3D HSQC-TOCSY experiment [2] with the pulse sequence shown in 
Fig. lB. The data set contained 3~(ta) x 48(t:) × 1024(h) complex 
points which were acquil~ using Sl~ctral widths of 177~ Hz (aJ,, t SN), 
320~ Hz (caz, tI-I~), and 10,000 Hz (oJ~, tH). The final data set size after 
zero-filling was 128(co3 x 256(ca:) x 16834(o~) points, giving a final 
digital resolution in oJ~ of 0.6 Hz per point. An MLEV-17 mixing 
scheme of 48 ms was employed which was modified for the suppres- 
sion of rotating frame NeE contributions [17], and water suppression 
was accomplished with a 2 ms spinlock using the method of Messerle 
et al. [18]. The water streak was further reduced during data processing 
by using a time domain filter in which linear Dediction was used to 
eatrapolate the filter for the initial time domain points. Thirty.two 
transients were accumulated per increment with a 1.1 s relaxation 
delay between scans. The total accumulation time was 2.5 days. 
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Fig. I. (A) PaI~ sequen~ for the IH-coupled 3D HCCH-TOCSV 
experiment. Wide bars correspond to 180 ° pulses and narrow bars 
denote 90 ° pulses except for the small gip angle (30") in the reverse 
INEPT part of the experiment. The phase cycling for the pulses con. 
gists of ~1 = (x ,x , -x , -x) ,  ¢2 = (x,-:¢), ¢3 = (y ,-y) ,  ¢4 = 8(x),S(-x), 
#)6 = (2x,2y,a(-x),2(-y)), ~)$ = (4x,4y,d(-x),4(-y)), ~7 = (x , x , - x , - x ) ,  
and ~8 = (4~¢,4.v) with the receiver cycled 2(x , -x , -x , x ) ,2 ( -x ,x , x . -x ) .  
Quadrature in t t and t: was obtained using States TPFI [26l by incre- 
menting #1 for tj and ¢4 for h. The carbon and proton carrier fre- 
quency was set at 52 and 3.13 ppm, respectively. (B) Puls~ sequgnc~ 
for the 3D ~SN.ccupled HSQC-TOCSY experiment with phase cy- 
cling: ~1 -- (x ,x , -x , -x ) ,  (J2 = (x,-x) ,  ~3 -- 4(x),4(-x), 04 = 8(x),8(-x) 
with the receiver cycled x , - x , - x , x , - x , x , x , - x .  Quadrature in t) and t, 
was obtained using States-TPPI [-')6] by )ncremenfin 8 gJ2 for t~ and 03 
for t.,, The proton ~rricr frequency was placed in the middle of the 
amides at 7.68 ppm. The rj delay (2.7 ms) was set to l/4(~Jr~,), and 
ra was added to compensate for the length of the 90* proton pulse. 

3. R E S U L T S  A N D  D I S C U S S I O N  

3.1.  M e a s u r e m e n t  o f  3Jd'.wa coup l ing  c o n s t a n t s  
Fig. 1A depicts the 3D H C C H - T O C S Y  pulse se- 

quence used in measur ing the ~Jr~%# coupling constants  
o f  [U-L3C)SN]FKBP when bound  to ascomycin.  After  
frequency labeling the p ro tons  during the t t period,  the 
magnet iza t ion  is t ransferred b y  an I N E P T  exper iment  
to the a t tached carbon  which is indirectly detected dur- 
ing t:. A DIPSI -2  mixing scheme [16] is used to t ransfer  
magnet iza t ion  between ca rbons  followed by a reverse 
I N E P T  sequence and  the detect ion of  the p ro tons  dur- 
ing the acquisi t ion (h) per iod.  N o  p ro ton  deeoupl ing 
was employed  dur ing t_~ to preserve the large ~J~3c.~a 
coupl ing impor t an t  in these E .COSY- type  experiments  
[2-7]. In  order  to avoid mixing  the spin states, either a 
selective p ro ton  90 ° pulse [5] or  a small flip angle pulse 
[6,7] could be used in the reverse I N E P T  par t  o f  the 
experiment .  We chose to use a small flip angle pulse to 
eliminate the p rob lems  associa ted with selectively per- 
turbing p ro tons  in crowded spectral  regions, with the 
added advan tage  o f  allowing all o f  the J-coupl ings  to be 
measured  in a single experiment .  

Representat ive  )3C(o)~),tH(co3) planes extracted f rom 
the 3D N M R  exper iment  at different p ro t on  chemical 

12,8 

shifts (wl) are shown in Fig. 2. The  ~Yu=.Ha coupl ing 
cons tan t s  are obta ined f rom these spect ra  by measur ing  
the f requency difference in o) 3 between the two l~C- 
coupled  s -p ro ton  peaks  (¢o2). In order  to obta in  an  
accura te  and reproducible measure o f  these couplings,  
several  methods  were tried. The  mos t  reliable a p p r o a c h  
was to extract  and simultaneously display on a graphics 
screen the  1D m3 traces o f  the 3D d a m  at  the center  o f  
each o f  the peaks  split by the large one -bond  i3C-~H 
coupling. The coupl ing constants were measured by 
shifting one of the traces relative to the other until the 
peaks overlap, with the amount of the shift correspond- 
ing to the coupling constant. 

Using this approach, both ~JH=}r a coupling constants 
could be measured (Table I) Ibr thirty-six of the sixty- 
one amino acid residues that contain two fl-protons 
(excluding proline). 3Ja= Ha coupling constants could not 
be measured for ten of these amino acids due to degen- 
erate fl-methylene protons and for another nine due to 
spectral overlap. For amino acid residues Val, Ile, and 
Thr that contain only one p-proton, coupling constants 
were measured for twenty out of twenty-one of these 
spin systems. Of these, only the 3JH= ~r~ coupling con- 
stant of Tl4 could not be measured as a result of spec- 
tral overlap with the water resonance. 
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Fig, 2. ~sC(aJ~.),~H(o3) planes from the ~H-coupled 3D HCCH-TOCSY spectrum extract~l at (A) 5.27, (B) 6.72, (C) 4.98, (D) 4.49, (E) 4.28 ppm 
fie0, 3j~.,& coupling constants are measured from the frequency dilTerenee in #~ betw~n the two ~C-eoupl~l a-proton peaks (ah). 

3.2. Measurement of3Jr~.: coupling constants 
The ~JN.~¢ a coupling constants for the [U-~SN]FKBP/ 

aseomycin complex were measured using the 3D t SN- 
resolved HSQC-TOCSY pulse sequence [2] shown in 
Fig. lB. No JSN decoupling was employed during the 
t., period, generating two peaks separated by the large 
~JN,H~ coupling constant from which the 3JN.H# cOu- 
plings were measured [2]. Fig. 3 depicts a q-I(co.~),'H(co3) 
plane from the 3D HSQC-TOCSY experiment ex- 
tracted at the ~SN(co~) chemical shift of 123.0 ppm. The 
3JN.~: coupling constants were measured from the 3D 
NMK spectrum from the frequency difference in co 3 
between the peaks split by the large one-bond ~SN,tH 
coupling in o.~ by the method of shifting the ID traces 
as previously described for the ~J,a%~# measurements. 
As shown in Table I, most of the possible ~JN,t~# cou- 
pling constants could be measured using this technique. 

3.3. Stereospecific assignments and :fl angles 
In previous NMR studies, the stereospeeific/~-proton 

assignments and g l  angles were determined from an 
analysis of both coupling constants and N e E  data [19- 

21]. In principle, if all four ~Jr¢'.H # and 3d'r~.na coupling 
constants can be measured, the X1 angle and stere- 
ospecific assignments of the ~-protons could be made 
independent of the NOE data. As shown in Fig. 4, two 
small 3JH%: coupling constants (<5.5 Hz) are indicative 
of a g- rotamer [22] fZI = +60 °) with the steleospecific 
fl-proton assignments defined by the ~Jr~.n a coupling 
constants (>4.0 Hz, H#~; <2.5 Hz, H#~). Two small 
~J.~.H# coupling constants (< 2.5 Hz) support a t ro- 
tameric state (;t'l = 180 °) with the stcrcospccific fl-pro- 
ton assignments defined by the ~Je~.,: coupling con- 
stants (<5.5 Hz, 14#"; >9.0 Hz, H#~). The g+ rotamer i~ 
supported by one big and one small 3JH:'.~: and 3JN.: 
coupling constant. 

From a qualitativc analysis of the coupling constants 
given in Table I, the stereospccific fl-proton assignments 
and preferredxl rotamers were determined for the indi- 
vidual amino acids of FKBP when bound to ascomycin. 
As shown in Table I, a single rotamer was determined 
for most of the amino acids using only the coupling 
constant data. In those cases in which one or more of 
the coupling constants could not be measured as for 
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Tl4, C22, R40, D41, ES4, VS5, 156, Q65, and M66, two 
gl rotamers were found to be consistent with the J'- 
couplings, eliminating only one of the possible ro- 
t~mers. In other cases such as for $8, RI3, K34, K52, 
and El07, the coupling constants did not support any 
of the possible xl rotamgrs. Additional stere=specific 
assignments and xl rotamers are also listed in Table I 
that could not be determined solely from the coupling 
constants but required the NOE data (asterisks). 

For a more quantitative analysis of the coupling con- 
stant data, the 3JN~.d~ and 3Jr,.: coupling constants 
were compared to those predicted by the Karplus equa- 
tions [20,23]: 

aJs=,t ~ = 9.Scos:(gl +240 =)-  1.6cosfgl +240 °)+ 1.8 

~J.~,~ = 9.Scos"(ZI)- 1.6cos~l)+ 1.8 

3JN..# = -4.4cos2(zl + 120 =)+ 1.2cosfxl + 120 ° )+0. I 

aJN.v:' = -4.4cos2~ 1 - 120 =)+ 1.2cosfx I - 120 =)+0. I 

In order to partially compensate for errors in the 
parameterization of the Karplus equations, the possibil- 
ity of restricted motional averaging, and the digital res- 
olution of the spectra, 21 values were accepted in which 
[Job~r,.,d--Jmdi,L,dl was less than +/-2 Hz for 3Js~.i~ and 
+/-I Hz for ~dN,a#. Predictcdx1 values within 20 ° of an 
eclipsed conformation were eliminated due to their high 
energy and to the fact that they are rarely observed in 
protein structures previously determined by X-ray crys- 
tallography [21,24]. 

As shown in Table I, for several of the re.cidues noxl 
angle could be found that satisfied these criteria. More- 
over, many of the xl angles that could be fit to the 

Tabl~ I 

ad.at~ and ~JN.d ~ coupling constants from which stere=specific fl-proton assignments and Xl rotamers/angles were determined. For comparison, 
theg'l angles measured in the X-ray structure of the FKBP/FKS06 complex [12] are listed 

8 (ppm) V CHz) z l  

res H ~ H# ~ H~,H #-~ H~,H #~ N,H ~ N,H #3 Rotamer NMR X-ray 

V2 - 1.89 - 3,1 - 0.7 8- 64 + 16 58 
Q3 1.99 2.13 9,2 o 1.2 4.9 g÷ -59 
V4 - 2.05 - 10,2 - m t 176 
E5 d d -67 
T6 4.10 - 10,7 - m - $÷ -68 
I7 1,35 - 13,2 - 2.2 - 8 ÷ -78 ± 2 -65 
$8 4,0" 2,0 1,8" 1,8 -42 
Dl l  3.02 2.77 5,5 2,0 5.6 2,3 g- 80 ~: 4 70 
RI3 1,78" 1.58" 5,1 3.0 2,4 1,2 8-* -17S 
TI4 4,28 - o - 1.2 - g+*/t -43 
FI5 2,64 3.12 9.0 2,0 1,2 4,8 8 ÷ -88--. 2 -66 
KI7 1,57 1.86 l 1,0 3,2 1.2 4,0 8* -84 _ 4 -71 
RIg d d -155 
Q20 2,29 !.94 m 4.1 0.6 5,8 8" -66 
T21 3.95 - 10,6 - 2.2 - g* -85 +_. 16 -65 
C22 2,18" 2,00" o o l.l  5,2 ~+*/g- -56 
V23 - 2.08 - 10,2 - 1,2 t -162 +_. 10 -176 
V24 - 2,55 - 4.3 - 4,3 8" -44 _+ 4 -52 
H25 o o 1.2 ~ 1,8 t -100 
Y26 3.40 3.24 2,0 4,0 5,6 1,2 g- 60 ")" 4 70 
T27 4.11 - 9.0 - 1.2 - g+ -86 _ 4 -62 
M29 1.99" 1.87" 2;0 2,0 m m l~- 65 
L30 2,23 1,97 ! 1.6 4,2 1.8 4,3 g+ ~72 +_. 0 -74 
E31 d d -93 
D32 3.01 2.64 3.0 4.0 4.3 1.8 g- 72 ± 2 62 
K34 3.0 Q 8.1 0.6" 2,4 -108 
K35 d d -173 
F36 3.36 2.73 4.0 4,0 4.8 0,6 g- 60 :I: 12 53 
D37 3.61 2.63 5.0 I0.0 1.2 0,6 t -176 + 8 -173 
$38 4.12 3.65 3.0 9.1 1.8 0.6 t -146 _+ S 173 
S39 5.03* 3,24* 3.0 2,0 m m g- 59 
R40 1.45" 1.49* 14.0 2.0 o o g**/t -66 
D41 2.82* 2.73* o o 5.4 0.6 g-*/g+ -67 
R42 d d --62 
N43 3.24* 2.71" 5.0 3.1 1.0 0.8 8-* -71 
K44 1.70" 1.84" o o 0.3 1.8 t 177 
F46 3.65 3.11 5.0 9,1 1.8 0.6 t 170 
K47 1.52" 1.29" 10.1 5,0 0.6 2.4 8 ÷* -60 
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8 (ppm) ~d (Hz) ZI 

res H ~ H ~ H~,H ~ Ha,H #~ N,H a' N,I-I ~ Retainer NMR X.ray 

F48 2.95 2.89 3.0 3.0 5.4 i.8 
M49 1,98 2.13 11.0 3.0 1,2 4.2 
L50 1.93 1.26 10.0 3.0 2.4 5,5 
K52 1.76" 2,13" 5.0 3.0 1.7 4,1 
Q53 d d 
E54 o o 0,6 ~ 4.2 
V55 - 1.42 - 5.0 - m 
156 2.33 - 2.0 - m - 
R57 1.82" 138* m m m m 
W59 3.01 2,66 9,1 m 2,4 4,8 
El0 d d 
E61 1,91 2,21 13,0 4,1 1,8 4.2 
V63 - 2.27 - [3.6 - 2.0 
Q65 2.15* 2.43* m m 0,6 2.4 
M66 2,15* 1,99" m m 1.7 5.7 
S67 2.41 3.76 5,1 3.0 4.2 1.2 
V68 - 1.86 - 10.5 - m 

Q7O d d 
R71 1,62 1.88 o 4.1 2,4 2.4 
K73 1.67 1.79 11.1 3.0 1,2 3.6 
L74 1,76 1,27 12,2 3.0 1.2 3.6 
T75 4,04 - 9.1 - 2,2 - 
176 1.92 - 13.2 - 0.0 - 

S77 4,44" 3,9B* 4.0 1.0 m m 
D79 2,79 2,88 5.0 1.0 5.4 1.2 
YS0 3,0~ 2,86 12.0 3,0 2.4 4.4 
Y82 2,78 3,24 13.2 1, I 0.6 5.4 
T85 4,31 - 10.9 - 1.8 - 
H87 1.71" 2,35 j o o 1.2 1.2 
I90 1.42 - 12.3 - 1.2 - 
191 1,42 - 10,2 2.4 - 
H94 d d 
T96 4.02 - 10.5 1.2 - 
L97 1,86 1.52 11.1 4.0 1.2 4.9 
V98 - 1.79 - 10.1 - 2,4 
F99 2.84 2.99 12. I 2.4 1.8 3,6 
D100 2.50 2.93 2.0 10.0 0.6 0.6 
VI01 - 1.67 - 10.2 - 1.2 
El02 1.64" 2,10' m m 1,2 m 
LI03 m m m 
L104 d d 
KI05 o o o o 
L106 1.58 1.23 12.2 3.0 0.6 4.8 
E107 3.0 ~ 7.0 2.4" 1,2 

g" 70 ± 2 70 
g* -82  ± 8 -69 
g* -82  ± 6 -97 
g '*  -78 

-69 
s'/8- -79 
g+*/8- -74 
g-*/t 49 

t* -177 
8 + -93 

-177 
8" -72  ± 2 -70 
t 166 :~ 4 176 

g '*/ t  --63 
g'"/g- -64 

g- 80 _ 4 58 
t 180 

-172 
t -174 

-88 ± 0 -89 
g'* -88 -+ 0 -51 
g* -94 ± 12 -61 
g" -60 ± 20 -64 
8- 62 
g- 74 ± 12 45 
8" -84 ± 4 -86 
g* -72 ± 12 -55 
g* -80  + 12 -56 
t -177 

8" -72 ± 16 -Sl 
g" -88 ± 12 -68 

-S0 
8" -76 ± 16 -68 
g* -62 ± I0 -55 
t 152 ± 12 180 

-88  ± 4 -76 
t -160 +_ 0 179 
t 156 - 12 -179 
t -172 

175 
-50 

g-* 54 
8" -64 ± 12 -62 

-48 

d, degenerate; *, derived from NOE data; a, lower fidd resonance; o, overlap with other peaks or noise; m, missing signal. 

coupling constant data were outside of  the range (60 ° , 
- 6 0  °, or 180 ° + / -  20 °) typieally observed in X-ray 
crystal structures [21,24]. Although the manner in which 
the coupling constants were analyzed is biased (i.e. it is 
easier to satisfy the criteria for angles larger than 60 ° 
or -60°),  motions1 averaging and inaccuracies in the 
parameterization of  the Karplns equations may also 
play a role. In addition to small angular fluctuations, 
large angular motions between different rotamers are 
possible. In an attempt to account for averaging be- 
tween different retainers, the N M R  data were analyzed 

in terms of  retainer populations on the assumption that 
the observed coupling constants are due to an average 
of the values observed for the g", g- and t retainers as 
typically employed in the analysis of  peptides [25]. How- 
ever, for proteins, these assumptions may not be justi. 
fled, since packing interactions may cause deviations 
from the standard returner geometries which would re- 
suit in coupling constants outside of  the range allowed 
by this model. Nevertheless, we analyzed both 3Jaa.rr~ 
and VN.~ (Table I) using this approach to determine if 
the data is qualitatively consistent with a preferred re- 
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Fig. 3. ~H(oJ~,~H(a~a) cross-section from the ill-coupled 3D HSQC-TOCSY spectrum extracted at 123.0 ppm (ah) that depicts HN,H ~ gross-peaks. 
~Jr~.~ couplin~ constants are measured from the fr=quency differen~ in co~ between th~ two I~N..coupled amide proton peaks (co:). 

tamer. As expected, the rotamer with the greatest popu- 
lation was generally in agreement with the 2,1 values 
predicted by the Karplus equations. However, excep- 
tions were noted for those residues (S8, R 13, N43, K34, 
K47, K52, and El07) that could not be fit to any x l  
angle. For these residues a preferred rot=met (>60%) 
could not be found that was consistent with both the 
3lH%l~ and 3JN,H# data, 

Since the amino acid residues on the surface of  the 
protein may be expected to be more flexible than the 
buried residues, our N M R  data were compared to the 
solvent accessibility of the FKBP residues determined 
in a preliminary N M R  structure of  the FKBP/ascomy- 
tin complex. As shown in Fig. 5, those residues in which 
four coupling constants were measured but could not be 
fit using the Karplus equations to a single 2,1 angle 
(hatched bars) were all found on the surface of  the 
protein. In addition, it is interesting to note that with the 
exception of Q70, the FKBP residues with degenerate 
fl-protons were found to be solvent exposed (Fig. 5, 
solid bars). 

3.4. Comparison to the X-ray structure o f  FKBP/FKS06 
The Z'I retainers determined from the coupling con- 

stants and NOE data for FKBP when bound to ascomy- 
tin were compared to the 2"1 angles measured in the 
X-ray structure of  the FKBP/FKS06 complex [12]. As 
shown in Table I, all of  the Z l returners that could be 
determined from the N M R  data were in agreement with 
the2"1 angles in the X-ray structure. These results sug- 

gest that the solution and crystal structures are very 
similar. The only difference in which the N M R  data 
were inconsistent with the X-ray structure was for some 
o f  the FKBP residues located on the surface of  the 
protein. Although the Z1 angles were defined for these 
residues in the X-ray structure, the coupling constant 
data could not be fit to a single Z1 retainer indicative 
of  conformational averaging. 

4. CONCLUSIONS 

A ~H-coupled 3D HCCH-TOCSY experiment is de- 
scribed for measuring 3Jn" ~ coupling constants in ~sC- 
labeled molecules. Using this technique aJH=.tl~ coupling 

g" (+80 ~ (}+('t~0 9 t(1 S0 o) 
H a H ~ H" 

CSJHCt, H~ smal l ,  ,~mall Dig, small  0mal l .  big 

SJN,HP, lal~, =mail ~mall, Big 5mall, =mall 

Fig. 4. Staggered rotamers 8", 8", and t aorr¢~pondina to,~l aasles 
÷60 °, -60 °, and 180 °, resl~'ctively [22]. ~JH=~ (small < 5.5 Hz, big > 
9.0 Hz) and ~J~.Ha (small < 2.5 Hz, bi 8 > 4.0 Hz) coupling constants 

that support the individual retainer=. 
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Fig. 5, Solvent acces~bilit:/(A:) determined from a preliminary NMR structure o1" the FKBP/aseomycin complex. The solid bars correspond to 
amino acid residues with degenerate,8-protons, and the hatched bars indicate FKBP residues in whi~:h four coupling constants were measured but 

were found to be inconsistent with a singlezl angle. 

constants were measured for [U-~3C,~SN]FKBP when 
bound to ascomycin. In addition, 3JN.H# coupling con- 
stants were measured for the [U-t~N]FKBP/ascomycin 
complex using an J~N-coupled 3D HSQC-TOCSY ex- 
periment [2]. From a qualitative analysis of this data, 
stereospecific fl-proton assignments and 2'1 returners 
were obtained which will be important for accurately 
defining a 3D structure of the FKBP/ascomycin com- 
plex in solution. All of the,;['l retainers derived from the 
coupling constants and N e E  data were in agreement 
with those obtained from the X-ray structure of the 
FKBP/FK506 complex [12], suggesting that the struc- 
tures of the two complexes are very similar. 
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