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A new native crystal form of heat-labile enterotoxin (LT) has two ABs complexes in the asymmetric unit with different orientations of the A subunit 
with respect to the B pentamer. Comparison with other crystal forms of  LT shows that there is considerable conformational freedom for orientating 
the A subunit with respect to the B pentamer. The rotations e rA in different crystal forms do not follow one sp~fl¢ axis, but most ofthem share 
a hinge point, clos~ to the main interaction area between A and Bs. Analysis of the two high-resolution structures available shows that these rotations 

cause very little change in the actual interactions between A and B v 

Heat-labile enterotoxin; Toxin; Conformational change 

1. I N T R O D U C T I O N  

Heat-labile enterotoxin (LT) is a major virulence fac- 
tor of enterotoxigenic Escherichia coli, which causes di- 
arrhoea with effects varying from mild 'traveller's di- 
arrhoea' to dehydration and death, the latter primarily 
in young children in developing countries [1]. The pro- 
tein shares epitopes, high homology (-80% sequence 
identity) and mode of action with cholera toxin (reviews 
[2--4]). These toxins consist of five identical B subunits 
(103 amino acids each), and a single A subunit (240 
amino acids). "ine B subunits bind to GMI gangliosides 
on the host epithelial cells allowing internalisation of 
the enzymatic A subunit. The A subunit is split, by 
reduction of a disulfide bond (187-199) and cleavage of  
the peptide chain into two fragments: AI (residues 1- 
-192) and A2 (-193-240). 

The crystal structure of  LT [5] showed that the inter- 
action of A and B is mediated mainly by the A2 frag- 
ment, which extends through a central pore in the B 
pentamer, with extensive hydrophobic and hydrophilic 
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contacts. The AI fragment, on the other hand, shares 
only a few salt bridges with the B pentamer (Sixma et 
el., manuscript in preparation). In two different crystal 
forms it has been noted that the A I fragment has a 
flexibility with respect to the B subunit [6,7]. This flexi- 
bility could have importanc~ during the import of the 
A subunit (or the A1 fragment alone) into the target cell. 
Here we present a fourth crystal form of LT containing 
two AB~ complexes of LT in the asymmetric unit, with 
yet two more different orientations of  the A subunit. 
The variability of  A with respect to Bs is analysed and 
a more detailed comparison of  the A/B interactions is 
made for the two crystal forms with high resolution. 

2. EXPERIMENTAL 

H~t-labilc entorotoxin from porcine E. car was overexpressed, 
using plasmid EWD299 in 17.. coil C600 and purified according to 
Pronk et al. [8]. Crystallisatinn of LT in the F2.~ space group occurs 
spontaneously in TEAN (100 mM Ttis, ! m M  EDTA, 0.02% azida, 
200 mM NaCl), but usually r~alts in twinngl crystal~ of a non- 
mcrohcdral type [8]. Conditions leadin 8 to the crystals used for the 
structure determination, in space group P212~2~, often give crystals in 
space group P2a as well. If this crystailisatinn is sufficicntiy slow it 
sometimes gives single or barely twinned crystals. The spcgd ofcrystal- 
Psntion could be lowore.d by increasing the initial salt conditions, since 
LT erystalliscs under low salt conditions, hut it also depends on the 
condition of the protein: if the protein has 'aged' [9], crystals grow 
more slowly. The crystals were grown at roam temperature by liquid/ 
liquid diffusion in capillaries, starting from a protein solution contain- 
ing 10 ma/ml LT in 500 mM KF containing TEA (100 mM Tris, I mM 
EDTA, 0.02% aside) diluted 1:1 with a precipitant solution containing 
3-6% PEG 6000 in TEA, all at pH 7.5. Before mounting, the crystal 
was equilibrated in a standard mother liquor (6% PEG (~)0, ! 75 mM 
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Table I 

Crystallographic data 

Native P2,2~2~ Native P2~ Samarium Lactose 
[§] (this study) [6] [7] 

Space group 
Cell dimensions 

Resolution (A) 
Number of measurements 
Number of unique reflections 
Rm,~ (%) (Z]I"<I>I/Z <I> ) 
Completeness (%) 
Completeness to 4.1 A (%) 
R-factor (%) (Z[F0-F~[/ZFo) 

a-axis (A) 
b-axis (A) 
c-axis (A) 
(degrees) 

P212121 P2x P2x2x2t P2,2121 
119.2 84,1 1 I8.8 119.8 
98,2 78,8 97.5 101,2 
64.8 123.2 65.0 64.2 
90.0 99.5 90.0 90.0 

1.95 3.4 3,4 2,3 
230816 57087 22101 73103 

53040 13971 5779 32172 
8.8 7.1 5.8 6.4 

94.4 62,5 57.1 90.9 
89.9 83.8 81.5 93.8 
18.2 26.2* 33,7* 16.8 

§ Synchrotron data collection at the EMBL outstation in Hamburg. on image plate with Hendrix-Lentfer scanner; $ixma et al., manuscript in 
preparation. 

*Only rigid body refinement, starting from native P2t2,2~ structure. 

KF in TEA, pH 7.5). These crystals have two ABe molecules in the 
asymmetric unit (Vm = 2.37 Da/A s, solvent content ~51.9%). 

Data were collected from a single crystal at room temperature on 
an Enraf Nonius FAST area detector, using an Elliot GX 21 rotating 
anode as X-ray source (Table 1), processed using MADNES [10], and 
scaled and merged using programs of the local BIOMOL program 
system. Twinning of the crystal was checked by precession photogra- 
phy aRerwards, bat no twinning was detected. 

The structure was solved by molecular replacement using X-PLOR 
with PC.refinement, op~imisation of the standard linear correlation 
coefficient between [Eo~I- and [E,,o~[ 2 [11]. The A and B.subunits were 
treated separately in this procedure. The high resolution P2~2~2~ native 
structure [5] (Sixma et al., manuscript in preparation) was used as a 
model. Rigid body refinement was performed as implemented in X- 
FLOR, initially with each AB# complex as a group, and followed with 
16 groups, eight for each AB~ complex (5 B subunits, A 1, and A2 split 
into two fragments comprising residues 196-222 and 223-240, respec- 
tively). No further refinement was done because of the limited resolu- 
tion, 

Analysis of the rotational variation was done by superimposing 
structures by the method of Rao and Rossmann [13], followed by the 
method of Kabsch [14]. The native high-resolution structure was used 
as reference molecule: in step 1 the B pentamers of the other cr:/stal 
forms were superimposed on the B pentamer of the native high reso- 
lution structure. In the next step the resulting coordinates were the 
starti,~g point for superposition of A I subunits. The rotation obtained 
in the second step relates to the difference in relative orientation 
between A and B. 

3. R E S U L T S  

The structure of LT in crystal form P2~ has been 
solved using X-PLOR molecular replacement with PC 
refinement, using separate steps for the A and B sub- 
units. PC refinement [l l] resulted in a very clear signal 
for the B pentamers (Ccf: 18.7% and 16.5%, respectively 
for three out of the five possible orientations of each 
pentamer). One A subunit also had a very clear signal 
(Cef: 8.4%); the second A subunit was found as the next 
highest peak, but this was barely above the noise (Ccf: 
4.4%). The orientations of the A subunits agreed within 
a few degrees  each  with one  o f  the five possible  ro t a t ions  
for  a B pen tamer .  T r a n s l a t i o n  funct ions  were very c lear  
for  the B pen tamers ,  and  pos i t ions  for  the B p e n t a m e r s  
were used as s ta r t ing  pos i t ions  for  the rigid b o d y  refine- 
ment .  Rig id  b o d y  ref inement  o f  the s t ructure ,  with X-  
P L O R ,  resul ted in a c rys t a l log raph ic  R - f a c t o r  o f  26.2% 
(Table I). T w o  cheeks were m a d e  fo r  the  cor rec tness  o f  
the pos i t ion  o f  the A subuni ts :  ( I )  s t ruc ture  fac tors  cal-  
cula ted leaving ou t  one  A subuni t ,  s a v e  R values  
(~,IFo-F,.I/~Fo) for  the r emain ing  model  o f  32.9% (omi t -  
t ing the A subuni t  o f  P2t-I  ) and  32.5% (omi t t ing  the  A 

Table II 

Relative rotations (degrees) of A subunits (At fragment) with resp~t to B l~ntamer in heat-labile ¢nterotoxin from E, colt. These rotations were 
obtained by first superimposing the B pentamers and then determining the rotations of the At fragment in the left column with respect to the A l 
fragment in the heading of each column. Tbe polar rotation angles, to, ~, ~, define an angle ic around an axis defined by ~ (deviation from x in 

the x-z plane) and ¥ (deviation from y) according to the convention of Rossman and Blow [16] 

Native P2~2,2~ Sm(NO3h Lactose Native P2~.;.l 

Native P21-1 7.5 26,4 77.8 6,0 38. I 84.8 5,6 34.0 120,5 
Native P2~-ll 5,5 14,9 87,8 3.9 29,2 i01,2 S,0 18.2 146.5 
Lactose 5,2 7,2 31.6 3.7 48.7 20,8 
Sm(NO~)~ 2.2 344.2 64,5 

2.7 55.8 60.8 
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Fig. I. Relative flexibility of the LT subunit interactions. (a) AB~ complexes of five different structures have been superimposed with their B 
pentamers on the LT-native high re~olution structure. Th, A subunits arc shown, plu~ the B pgntamer of the aativ* P2~2t2t structure. The rotation 
axes which relate all A subunits are shown in dotted lines. These ten axes correspond with those in Table lI, The five structures am: (i) native P2)2~2), 
(ii) LT:lacto~e complex, obtained by cocrystallisation, (iii) LT:Sm, obtained by soakin8 with $m(NO~)~, (iv) native P2~-I, (v) native P21-il. 0a) The 
six rotation axes relating the A suhunits of the different structures in (a), omitting the four a~es related to the Smt'NO~)~ ~oaking structur*, which 
are of a different type (see text). In addition the Ctz trace of the A subunit of LT in the native P2j2,2j crystal form is shown. Note that all axes 

cross each oth~r approximately around Gin A2:221, and that they describe a sort of 'swinBing' motion around the fivefold a~is. 

subunit of P2t-ll), considerably higher than the 26.2% 
found for the complete model (Table I)~ (2) electron 
densities calculated with phases from a model where one 
A subunit was left out gave convincing d~nsity for each 
of the two A subunits. 

Superposition studies show that both complexes in 
the P21 crystal form have an orientation of the A sub. 
unit with respect to the B pentamer which differs from 
all previously determin~l crystal forms of LT (Table II). 
There is also a difference between the orientation of the 
A subunits in the two complexes in the asymmetric unit, 
by 2.7 degrees (Table II). As in previous studies the A2 
region has a hinge function: residues A1:196-222 moves 
with A1, and residues A2:222-237 with Bs. 

Heat-labile enterotoxin has now been determined in 
five different forms: (i) the native structure in crystal 
form P212~2, at 2.3 A [5] and 1.95 A (Sixrna et al., 

manuscript in preparation), (ii) the structure after soak- 
ing with Sm(NO3)~ [6], (iii) the structure co-crystalliscd 
with lactose [7] and (iv) the P2j-I and (v) the P2rlI  
conformations, described in this paper. A supcrposition 
of the five different crystal structures is given in Fig. 1, 
together with the rotation axes relating the A subunits 
to the different crystal forms after superimposing the B 
pentamer. Angular values of the rotations between the 
different crystal forms are given in Table II. The devia- 
tions are not large, varying between two and seven de- 
grees, but it is clear that there is not one standard orien- 
tation of the A subunit of LT with respect to its B 
pentamer. The most extreme variation occurs between 
the native high resolution structure and the P2j-I struc- 
ture, indicating that the effect is independent of any 
outside influence other than crystal contacts, since these 
crystals grow under identical circumstances. Most axes 
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relating the variable orientations of the A subunit cross 
each other approximately at a common point, near Gin- 
221 (Fig. lb), close to the area where most interactions 
between A and B occur. The exception is for axes re- 
lated to the samarium nitrate soaking structure (Table 
II, Fig. 1). This crystal form, however, is special in two 
ways: (i) it was the result of  a soaking experiment, and 
the rotational freedom has been severely limited by crys- 
tal contacts (the crystal was cracked by the soaking [6]); 
(it) there are two samarium ions bound in the AJB inter- 
face, which presumably influence the relative orienta- 
tion of A versus the B pentamer. 

A closer comparison of the variation of the interac- 
tions is made for the two refined structures with high 
resolution, the native P2~2~2~ and the lactose:LT com- 
plex. Fig. 2a shows the rms difference between the A 
subunits of  these two structures, after superposition of 
the B pentamer. The regions of low rms deviations in 
AI, around residues A1:86-93, 117-128, 142-153, 
A1:121-123, A1:138-150, are relatively close to the B 
subunit, showing that this is where the hinge region is. 
Interactions of  the B pentamer and A1 are mainly given 
by residues A1:33, 148 and 151. Especially the last two 
have a very small rms difference in the two structures, 
while the loop 30-33 which is in contact with A1, A2 
and the B pentamer, has a slightly larger change in 
conformation. Other regions of A1 with low variability 
are in contact with A2: residue A1:93 and 95, as well as 
residue 123. In Fig. 2b the variable movement of the A2 
fragment is clearly visible. The N-terminal fragment of 
A2 (A2:196-215) rotates with A1, while the C-terminal 
fragment (A2:223~237) follows the B pentamer, with the 
region 215-222 in an interm~liate position. These small 
rms differences show that the hinge area of  the rotation 
is in the region where the A2 helix enters the pore in the 
B pentamer, the place where the interaction between the 
subunits is largest ([5], Sixma etal., manuscript in prep- 
aration). 

Specific changes of interactions are very limited: 
some of the salt bridges at the entrance of the pore have 
been slightly changed, but the overall interactions are 
very much the same. The solvent-accessible surface, 
buried by the interaction A and B is almost identical 
[15]. The major difference is Arg A1:143, which has a 
different conformation. This results in two extra A-B 
salt bridges and an increase of 80 A ~- in the buried 
accessible surface of  the lactose complex. However, the 
density for this residue is weak in the native structure, 
making this difference not very significant. 

4. DISCUSSION 

Analysis of  the new crystal form of  LT was under- 
taken to inveo.tigate the variabi!ity. ~n subunit interac- 
tions in the native structure. The flexibility of A with 
respect to the B pentamer is not significantly larger than 
in previously known crystal structures. Although the 
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Fig. 2. Rms positional difference of the residues of the A subunits 
between the high rezolution native LT (P2~2~2~ crystal form [S], Sixma 
et el., manuscript in preparation) and LT:lacto~e complex [7]. (a) 
DilTereaee after supcrposition of B pentamers. Thick lines indicate 
rms for Ca's, dashed lines for side chains (average per subunit). Res- 
idues with small differences are A:B~ contact residues as discussed in 
the text. The C-terminal residues from 218 onwards show small differ- 
ences because they move together with th~ B pentamcr. R~idues 
189-196 are omitted because they are virtually invisible in the electron 
density maps. (b) Difl~rcnee~ in C~' positions for A2 fragment, straight 
lines: after supcrposition of B pentamer; dashed lines: after aup~rpos- 

ition oi' A1 fra~nent. 

various rotations do not follow a common axis, ttaey 
seem to have a common hinge point: in the region where 
AI interacts with B~0 near residue Gin-221. The result. 
ing changes in the interactions o f  A and B are minimal, 
because there is only a very localised interac:ion be- 
tween A and B~. 

An interesting question is whether the observed flexi- 
bility is the unintentional result or the actual goal of  
these minimal contacts: having the A subunit in such an 
exposed position may be useful for further interactions, 
e.g. with membrane or other proteins, during its path 
from the periplasm of  the parent bacteria to the tyro. 
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plasm of the host target cell. In this case the flexibility 
would only be the consequence of this exposed position 
of the A subunit. Alternatively, it could be that the 
flexibility of the A ~ubunit itself is crucial for some step 
during the internalisation process. In fact it may well be 
that the flexibility~ observed in the crystal structures 
elucidated so far, is only the beginning of  a more elabo- 
rate conformational change taking place during the 
membrane translocation process. 
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