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The high molecular weight form or culdesmon (h-culdesmon) is phospltorylatcd in vascular smooth muscle. The stoichiomctry or caldcsmon 
phosphorylation increases in response to stimulation of the muscle by scvcral contractile agonists: however. the responsible kinase has not been 
identified. In this study, we have sequenced the phosphopcptidcs prepared from h-caldcsmon phosphorylutcd in vitro by protein kinase C (PKC) 
as well as the phosphopeptides prepared rrom caldssmon phosphorylated in intact canine aortas that were stimulated to contract with PDBu. PKC 
phosphorylnted three sites located in the C terminus: GSS*LKIEE. AEFLNKS*VQK and NLWEKQS*VDK. while h-ealdesnton from intact tissue 
was phosphorylatcd at twlo separate sites also in the C terminus: VTS*PTKV and SPAPK. By comparison to known substrate eonsensusscqucncca 
for various protein kinuses these data suggest that h-caldcsmon is directly phosphorylated by a proline-dircetcd protein kinasc and not by PKC. 

CHIdesmom Smooth muscle; Protein phosphorylation; Protein kinasc C: Prolinc-directed protein kinasc 

1, INTRODUCTION 

Caldesmon is an actin binding protein that was first 
identified in gizzard smooth muscle as a 140,000 Da 
band on polyacrylamide gels (h-caldesmon) [l]. h-Cal- 
desmon has since been found in all types of smooth 
muscle and a lower molecular weight variant of approx- 
imately 80,000 Da (I-caldesmon) has been identified in 
non-muscle cells [2,3]. Moreover, cDNA’s fcr both 
forms have been cloned and sequenced [4,5]. h-Cal- 
desmon is known to inhibit actomyosin ATPase activ- 
ity, in vitro [6-91 and to increase the binding 01 actin to 
myosin [S]. The latter effect may be the result of ‘tethcr- 
ing’, that is, binding of the carboxyl terminus of cal- 
desmon to actin and the amino terminus to myosin 
[9,10]. Because of these effects and complex interac- 
tions, h-caldesmon is postulated to modulate the con- 
tractile properties of vascular smooth muscle [2,3,11]. 

Caldesmon is a phosphoprotein in vascular smooth 
muscle [l Z-141 and in non-muscle cells. In non-musc!e 
cells, ‘caldesmon kinase’ has been identified as ~34““’ 
and phosphorylation leads to dissociation of l-cal- 
desmon from actin during mitosis [I 5-183. In the vascu- 

rl bbreviuriom: EGTA, [ethylcncbis(oxycthyIcncnitrilo)]tctraacetic 
acid: EDTA, ethylcnediaminctctraacctic acid; MOPS, mor- 
pholinopropane sulfonic acid: PKC, protein kinase C; PDBu, phor- 
bol-I 2. I3mdibutyrate; TPCK, ~-tosyl-~-phenylalanine chloromethyl 
ketone; TLCK, Na-ptosyl-L-lysinc chloromethyl ketone: PMSF, 
phcnylmethylsul~onyI fluoride. 

Curresyorf&/tcc LI&~‘SS: L.P. Adam, Kranncrt Institute of Cdrdioi- 
ogy, Indiana University School of Medicine. I I I I West 10th Street, 
Indianapolis, IN 46202-4800. USA. 

lature, h-caldesmon is phosphorylated in response to 
several contractile agonists that induce sustained iso- 
metric tension, including PDBu and KCI [l&13]. How- 
ever, while several kinases are known to phosphorylate 
h-caidesmon, in vitro [19,20-221, the native ‘caldesmon 
kinase’ and the proximate second messengers required 
for activation have not yet been identified. 

In this study, we directly addressed the question of 
whether h-caldesmon, in intact tissue stimulated to con- 
tract with PDBu, is phosphorylated by PKC. Our re- 
sults demonstrate that the caldesmon phosphopeptides 
prepared from intact, stimulated aortas are different 
from those prepared from caldesmon phosphorylated in 
vitro by PKC. We suggest that phosphorylation of h- 
caldesmon in response to PDBu may result from a cas- 
cade that ultimately leads to activation of a proline- 
directed protein kinase. 

2. EXPERIMENTAL 
2, I a Mm~~‘ub 

Most chemicals and rcagcttts were purchased Born Sigma. [“PIor- 
thophosphatc and v2P]ATP were Born New England Nuclear. S. ua- 
I’L’US protcasc was obtained Born Picrcc, ttypsin-TPCK trcatcd was 
from Worthington and endoprotcina% Lys-C was from Boehringr 
Mannheim. All HPLC columns were purchnscd from Bio-Rad. 

2.2. Pl~o.sphor_vlu~iot~ uJ’ cald~wr,tot~ hy promit kitruse C 
Porcine stomach h-caldesmon was maximally phosphorylated by 

protcin kinasc C, in the prcscnec or V’PIATP by a method we have 
described previously [I?], h-Caldcsmon was digested with trypsin and 
ihc phosphopeptides separated using a cumbination or iron-chclatc 
aBmityjc chromatography [23] and reverse-phase HPLC. Phosphopcp- 
tides wcrc squcnccd with the Applied Biosystems Model 477 Protein 
SLqucnccr using procedures deseribcd previously [24]. The identity of 
the phosphorylatcd residues was dcduccd from scvcral sxpcrimcnlal 
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Fig. 1. Purification of caldesmon from canine aorta. J2P0,-labeled 
caldcsmon was purified from canine aorta as described under experi- 
mental procedures, Panel A is a Coomassic blue-stained poly- 
ucrylamide gel (7.5%) and panel B is an auroradiogram of the gel in 
panel A. Litnc I is the original boiled homogcnatc: lane 2 shows the 
proteins after 30-50% ammonium sulrate precipitation: lane 3 is after 
Scpharosc-4B chromatography: and lanc4 is uftcr DEAE puriftcation. 

Luncs H und L contain molecular weight markers, 

protocols including phosphoamino acid analysis, a comparison of the 
ratio of Do-scrinc/PTH-scrinc in the sequencing cycle [X,26] and a 
correlation of the lcmporal sequence ~l’[‘~P]phosphatc libcrstion with 
amino acid scqucnce [27]. 

Tissue strips wcrc dissected from canine aortas and stimulated to 
contract for 30 min by I ,uM PDBu II 36OC. PDBu wus chosen as the 
agonist because phosphopeptidc maps ofcaldcsmon from arteries shut 
arc unstimulutcd (rclaxcd) or rtimulatcd to contract with either KCI 
or PDBu are identical [ 121. The only difference upon agonist stimula- 
tion, is the level of phosphate incorporated into cdldcsmon. In order 
to label caldcsmon, some tissue strips were pre-incubated for 90 min 
in a solution conutining I”P]orthophosphaw (S mCi/4 ml) in place of 
unlabeled phosphate. At the end of PDBu stimulation, tissue strips 
were frcczc~clampcd with liquid N2scoolcd tongs and ground to a fine 
powder. The ground tissue (58.7 g) was added to 6 vols of boiling 
extraction buffer mat consisted or300 mM KCI, 5 mM EGTA, I nlM 
EDTA. ?5 InM NaF, 5 mM sodium pyrophosphntc, 1 mM sodium 
orthovanadate, 50 mM imidazole, pH 7.0. IO mM dithiothreitol, I 
pg/rnl leupeptin and 0.1 mM each of TPCK, TLCK and PMSF. 
hCnldesmon was purified from this solution by ccntrifugation. differ- 
ential ammonium sulfate precipitation, and chormatography using 
Sepharose-rlB and DEAE-Scphacel. The chromatographic separa- 
tions were performed using a buffer lhat consisted of 20 mM MOPS, 
pH 7.0. IO mM NaF and I mM CXh of EDTA. EGTA. dithiothreitol, 
sodium orthovanadatc and sodium pyrophosphatc. 

Purified h-cnldesmon was dialyzed aguinst NHdHCOI, lyophillizcd 
and then subjcctcd to protcolysis using 30 pg S, NWXS prouusc. 
Pcptidcs wcrc purified by HPLC using a combination ofrcvcrsc.pbasc 

Sequcnccs of phosphorylation sites on h-caldesmon from stimulated canine aorta. Peaks A und B (Fig. 2b and 2~) 
contained the canine aorta phophopeptidcs listed under ‘original sequence(s)‘. Also listed are the ualdesmon 
sequences from human fibroblast [S]. rat liver [ 181 and chicken gizzard [4] that most closely mulch tlx canine aorta 
sequence. Diffcrcnccs in primary sequence arc indicated by lower cast Ictters and gaps in the sequence are dcnotcd 

by it dush 

Peak A scquenccs 

Cenine tiortu 

Human 
Rat 
Chicken 

Original seqticnccs 

NTFSRP6AGAWUEE 

NTFSRPQ--qRiISvd 
NaFSpsrsggRASgd 
L!nkr.own 

Limit phosphopeptide” 

Canine aortu vTs*PTW 

Human 
Ra1 
Chicken 

KQBVmWl’5PlXV 
RQSVDKVWP’IXV 
KQBVeKpaasssk 

Peak B sequences 
.- 

Orightal sequence Limit phosphopeptid&’ 

Canine aorta QLTKl?PDQNKS’PAPKPSDLRPQDVSQK 

Humun wLTKTPWNKB PAPKPSDLRPODVSsK 
Rtil wLTKsPDGNKS PAPKPSDLKPQDVSQK 
Chicken wL'PKCPe(dNKS PAPKPSDLRPGDVSQK 

S’PAPK 

“This phosphopeptidc contained all the radioactivity in peak A and was purified after subjecting peak A to cryptic 
digestion. A phosphoamlno acid analysis of this pcptidc yielded only phosphoscrinc. 

“This phosphopcptidc contained all the radioactivity in penk Band was purified after subjecting peak B to digestion 
with trypsin and cndoprotcimtsc Lys-C. 
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Fig. 2, Purification o1' ¢aldesmon phosphopeptides. The san'Jple shown in lane 4 o1" Fig. 1 was digested, and the phosphopcptides purified, as 
described in section 2, Panel a shows phosphopeptide elution I¥om a CI8 reverse-phase column. Fractions containing peaks A and B were pooled, 

purified by ion-exchange chromatography and then elated from the same C18 column as shown in panels b and c. respectively. 

and ion-exchange columns, and then sequettced as above. Where indi- 
cated, further digestion of phosphopeptides was carried oat using 
trypsin in 100 mM NHaHCO.~ or ¢ndoproteinase Lys-C in a buffer 
consisting of 25 mM Tris, pH 8,5 and 1 mM EDTA, 

3, RESULTS 

The results of caldesmon purification from phorbol 
ester-stimulated canine aortas are shown in Fig. 1. Im- 
portantly, the "~"POdcaldesmon ratio remained constant 
throughout purification, verifying the absence of con- 
current phosphorylation or dephosphorylation. Pas- 
sage of the protease-digested caldesmon over a C18 
column resolved two major radioactive peaks (Fig. 2a). 
These two initial peaks were further purified by HPLC 
to yield peaks A and B (Fig. 2b and c), that  were present 
in approximately equal amounts after taking into ac- 
count losses incurred throughout purification. In the 
original sample, 58% of  the radioactivity was incorpo- 
rated into caldesmon; the remainder was distributed 
evenly among proteins on polyacrylamide gels. Of  the 
total radioactivity in caldesmon, 81% was accounted for 
by the ~-PO~ in peaks A and B. No other radioactive 
peaks were detected in any of  the various HPLC runs. 

Upon sequence analysis, peak A (Fig. 2b) contained 
two peptides possessing several serine or tiareonine resi- 
dues (Table I). This sample was further digested with 

Table II 

Major sequences on porcine stomach caldesmon phosphorylated by 
protein kinuse C. Porcine stomach caldesmon was phosphorylated by 
PKC and the phosphopeptides were purified as deserib~l under exper- 
imental procedures. The upper sequence in each set is the PKC phos- 
phorylation site in porcine stomach ealdesmon. The lower sequences 
are the closest matching sequences in caldesmon fi'om human fibro- 
blast [5], rat liver [181 and chicken gizzard [4]. Percent of total phos- 
phate is equal to the amount of phosphate incorporated into the site 
divided by the total amount of phosphate incorporated into ¢aldesmon 

Source Sequence Percent of total phosphate 
in caldesmon 

Porcine GSS*LKIEE SO 

Human GSS LKIEE 
Rat GSS LKIEE 
Chicken GSS LKIEE (592) 

Porcine AEFLNKS*VQK 3S 

Human AEFLNKS VQK 
Rat AEFLNKS VQK 
Chicken AEFLNKS AQK (603) 

Porcine N L W E K Q S * V D K V T S i ~ F K  15 

H u m a n  

Rat 
Chicken 

NLWEKQS VDKVTSPTK 
NLWEKQS VDKVTSPTK 
NLWEKQS VEKPAASSS (735) 
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trypsin and the resulting phosphopeptide purified by 
H PLC. Sequencing of this limit phosphopeptide yielded 
the sequence, VTSPTKV (Tabel I), that is not found in 
gizzard caldesmon. Phosphoamino acid analysis con- 
firmed that phosphate was incorporated into a serine 
residue (data not sho,vn). Peak B (Fig. 2c) consisted of 
only one peptide that began with a sequence corre- 
sponding to position 692 in gizzard caldesmon. The 
length of this original peptide and its termination site 
could not be determined. Treatment of peak B with 
trypsin gave the sequence Thr696-Lys 71s (Table I) of 
gizzard caldesmon and further digestion with endopro- 
teinase Lys-C gave the sequence SPAPK (Table I). 
Table II summarizes the phosphopeptide sequences pre- 
pared from caldesmon phosphorylated in vitro by PKC. 

4. DISCUSSION 

In earlier studies, we reported that caldesman is 
phosphorylated during isometric contraction of vascu- 
lar smooth muscle [12,13]. Moreover, we observed that 
phosphopeptide maps prepared from 3~-P-labeled cal- 
desmon immunoprecipitated from unstimulated mus- 
cles or muscles stimulated with KCI or PDBu were in- 
distinguishable from one another but clearly different 
from maps prepared from caldesmon phosphorylated in 
vitro with Ca-~'Tcalmodulin kinase 1I or PKC [12]. From 
this we concluded that 'caldesmon kinase' was neither 
PKC nor CaZ÷/calmodulin kinase II. Of course, it is 
possible that in response to stimulation by other ag- 
onists, these kinases might catalyze caldesmon phos- 
phorylation in intact muscle. 

In the present study, we selected PDBu as the agonist 
for investigation because it is known to bind directly to 
and activate PKC. Activated PKC can phosphorylate 
a number of contractile, cytoskeletal and ion channel/ 
antiporter proteins any or all of which may lead to the 
increase in isometric tension that is observed in PDBu- 
treated vascular muscle [28]. PKC could also activate 
other protein kinase systems through a phosphorylation 
cascade or via changes in intraeellular Ca '-+. 

From the present study it is clear that ealdesman is 
phosphorylated in PDBu-stimulated muscles by a pro- 
line-directed protein kinase and not by PKC. In nan- 
muscle cells, one kind of proline-directed protein ki- 
nose, p34 ¢'~':, has been implicated as a 'caldesman ki- 
nose' and recently this enzyme has been shown to phos- 
phorylate h-ealdesmon in vitro [17,19]. However, an- 
other family of proline-directed protein kinases, the 
MAP kinases (i.e. MAP, microtubule-associated pro- 
tein) is also present in many mammalian tissues [29]. 
Recently, we have identified two ~nembers of this fam- 
ily, p42 m~pk and p44 m''Pk, in bovine aortic smooth muscle 
and in cultured bovine aortic cells (Adam and Hatha- 
way, in preparation). Thus, considerably more work 
remains to identify 'caldesmon kinase' with certainty. 
However, since the MAP kinases and p34 ''~'2 have been 

implicated in growth, di~if~rentiation and proliferation 
of cells [29] and vascular smooth muscle has been shown 
to contract in response to stimulation with several 
growth factors [30], further investigation of the problem 
of caldesmon phosphorylation in vascular muscle may 
elucidate additional links between growth and contrac- 
tile regulation. 
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