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Intracellular Ca?*-storage organelles are found in virtually all eukaryotic cells. They play an important role in the regulation of the cytosolic free

Ca?* concentration and, thereby, in the regulation of cellular activity, Ca®*-storage organelles voasist, in the simplest model of a Ca?* pump, of

a Ca?*-storage protein and a Ca?*-release channel. The primary structure of these functionally important proteins of Ca?*-storage organelles is

similar in different cell types and conserved through evolution. In contrast, their spatial arrangement and, thus, the architecture of Ca?*-storage
organelles may vary dramatically from one cell type to another.

Ca®* pump; Ca** release channel; Ca** storage protein; Sarcoplasmic reticulum; Calsiosome; Endoplasmic reticulum

1. INTRODUCTION

Virtually all eukaryotic cells possess intracellular
Ca?* stores. Together with the plasma membrane,
these Ca®* stores play a crucial role in the regulation of
the cytosolic free Ca** concentration, [Ca®*];. In the
resting cell, they lower [Ca®* ]; to values of around 100
nM; in the activated cell they rapidly release Ca>* and
raise [Ca**]; to micromolar levels. These changes of
[Ca®*];, albeit small compared to the millimolar ex-
tracellular Ca?* concentration, are sufficient to ac-
tivate or inactivate a variety of intracellular processes
and to influence thereby virtually every aspect of the
physiology of a cell (for recent reviews see [1,2]).

Given this central role of Ca®* in cell regulation, it is
not astonishing that the primary structure of func-
tionally important proteins of Ca®* stores is conserved
through evolution. For example, the Ca®™ storage pro-
tein calreticulin, as cloned from rat skeletal muscle,
shares a high degree of homology with a Ca?* -binding
protein from human lymphocytes, but also with pro-
teins from the insect Drosophila and the parasite On-
chocerca volvulus [3]. Similarly, the intracellular
Ca’*-pump protein of yeast shows significant
similarities with the primary structure of its mammalian
counterpart [4].

However, given the extreme variety of cell types
whose activity is regulated by Ca®* -storage organelles
(from neutrophils to muscle fibers) and the variety of
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cellular functions that are regulated by Ca®* (from
phago-lysosome fusion to fiber contraction), it is also
not astonishing that the functional properties and the
spatial organization of Ca®* -storage organelles seem to
vary dramatically between different cell types.

This review will therefore consist of two parts. I will
first summarize our present knowledge on functionally
important proteins of Ca®* stores and will then discuss
the putative heterogeneity of Ca?* -storage organelles.
In this short review, many important aspects had to be
omitted and the interested reader should also consult
other recent reviews on this subject [5-7].

2. FUNCTIONALLY IMPORTANT PROTEINS OF
Ca’*-STORAGE ORGANELLES

A Ca®*.-storage organelle consists, in the simplest
model, of a Ca®>* pump, a Ca®* -storage protein and a
Ca?* -release channel.

2.1. Ca** pumps

Tissue-specific expression of three intracellular
Ca’* -pump proteins has been demonstrated: the type I
or fast-type Ca’*-ATPase is found in fast-twitch
skeletal muscle; the type II or slow-type Ca®* -ATPase
is found in slow-twitch skeletal and cardiac muscle; and
a non-muscle form of the slow-type Ca®*-ATPase is
found in non-muscle cells [8,9].

All three proteins are approximately 100 kDa
Ca’*-ATPases that can form a phosphorylated in-
termediate in a Ca?* -dependent manner (e.g. [10,11}).
They are structurally distinct from the plasma mem-
brane Ca?*-ATPase [12]. While a separate gene codes
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for the fast-type Ca®* -ATPase, the slow-type and the
non-muscle slow-type Ca®*-ATPases are generated by
alternative splicing of the same gene [8,9]. So far, ex-
pression of only one type of Ca®* -ATPase per cell type
could be found. However, functional studies in non-
muscle cells suggest that certain cell types might have at
least 2 types of Ca?*-pump mechanisms (e.g. [13]).
Therefore, other types of intracellular Ca2* pumps
have been proposed. A 140 kDa protein that crossreacts
with monoclonal antibodies raised against fast-type
Ca®* -ATPase has been suggested to be the Ca®* -pump
of the Ins(1,4,5)Ps-sensitive Ca®>* pool in adrenal
chromaffin cells [14]. In pancreatic acinar cells, Ca®*
uptake into the InsPs-sensitive Ca®* pool has been pro-
posed to occur through a mechanism that is insensitive
to vanadate, but sensitive to the proton ionophore
nigericin [13]. However, no data on the structure of
these putative Ca’* pump proteins is available.

2.2. Ca’*-storage proteins

In order to function as intraluminal Ca?* buffer,
Ca’*-storage proteins of intracellular Ca®* stores
should bind Ca?* with a high capacity, but low affini-
ty. In mammalian tissues, at least four intracellular pro-
teins with these properties have been described: skeletal
muscle calsequestrin [15], cardiac calsequestrin [16],
calreticulin' [17,18] and endoplasmin/grp94/ERp99
(presumably endoplasmin, grp 94, and ERp99 are iden-
tical proteins, however, no unifying terminology exists;
see [19]). Each of these putative Ca®* -storage proteins
shows a distinct tissue distribution. Cardiac and skeletal
muscle calsequestrins are found mainly in cardiac and
skeletal muscle sarcoplasmic reticulum. In addition,
proteins closely related to calsequestrins seem also to be
expressed- in smooth muscle and chicken cerebellum
[20,21]. Calreticulin is found in virtually all cell types
[17]. In subcellular fractionation studies in some non-
muscle cells, it co-purifies with Ins(1,4,5)P;-sensitive
Ca’* stores [22]. Endoplasmin/grp94/ERp99 is found
in a variety of non-muscle cells [19]. Although a role in
Ca®"* storage by intracellular organelles has been pro-
posed for all four proteins, such a role has never been
experimentally proven,

All four putative Ca®* -storage proteins have been
cloned. Skeletal muscle and cardiac calsequestrins,
although products of different genes, show 65% se-
quence similarity [16]. Skeletal muscle calsequestrin
and calreticulin contain two short stretches with similar
sequence [18]. No sequence similarity —of én-
doplasmin/grp94/erp99 with calsequestrins has been
described. Calreticulin and endoplasmin/grp94/erp99
share the C-terminal Lys-Asp-Glu-Leu sequence, usual-
ly referred to in the one letter code as KDEL sequence.
However, this sequence is found in many non-secreted
proteins [23] and cannot be considered as an indication
of sequence homology.

The most obvious role of Ca? * -storage proteins is to
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act as Ca’* buffer in the lumen of Ca®*-storage
organelles. They thereby reduce the lumen/cytosol
Ca’* gradient and diminish the risk of Ca®* precipita-
tions due to extensively high intraluminal Ca®* concen-
trations. However, Ca?* -storage proteins may not only
be passive Ca®* buffers but also be actively involved in
the regulation of the Ca®* release. Indeed, cardiac
calsequestrin interacts Ca’*-dependently with sar-
coplasmic reticulum membrane proteins [24]. In-
terestingly, Ca®* binding to calsequestrin is driven ex-
clusively by entropy gain, a feature typically observed
with proteins that act as Ca®?* vectors in signal
transduction rather than as simple Ca®* buffers [25].

No data in favour of an active role of non-muscle
Ca’*-storage proteins in signal transduction are
available. However, it has been postulated that in non-
muscle cells the filling state of the intracellular Ca®*
store might (i) affect its Ca®*-release properties [26]
and (ii) regulate Ca®* influx across the plasma mem-
brane [27]. Such a role of the filling state of the in-
tracellular Ca%* pool is only conceivable if there is an
intralumminal Ca’* sensor. Both calreticulin and en-
doplasmin/grp94/ER99 would be ideal candidates for
such a function.

2.3. Ca’*-release channels

Ca®* -release channels must be able to release Ca**
during cellular activation, Thus, in addition to a Ca®*
channel portion, they need a sensor that recognizes a
cellular activation signal. In the case of many non-
muscle cells, this activation signal is inositol(1,4,5)
trisphosphate, Ins(1,4,5)P;3;, which is generated in
response to cell-surface activation by a variety of
agonists [28]. Indeed, an Ins(1,4,5)Ps-sensitive
Ca’*-release channel, usually referred to as the
Ins(1,4,5)P3 receptor, is widely distributed among non-
muscle cells [29].

In muscle cells, another Ca?®*-rclease channel is
found, the ryanodine receptor [30]. This channel
becomes Ca’* -conductive in response to ryanodine,
caffeine and Ca*?*, however, the physiological activa-
tion signal for this channel is still a matter of debate and
might depend on the cell type. Recent studies show that
a ryanodine receptor is also found in certain non-
muscle cells [31].

Molecular cloning of the Ins(1,4,5)P; receptor show-
ed a neuronal and a non-neuronal form of the protein,
derived by alternative splicing [32}. The comparison of
the primary-structure of the ryanodine receptor and
Ins(1,4,5)P3 receptor revealed some areas of high
homology between the two proteins. Thus, there seems
to be a genetically related family of intracellular Ca?*
release channels.

3. HETEROGENEITY OF Ca?* STORES

The above described proteins, Ca?* pumps,
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Ca’* -storage proteins and Ca®* -release channels, are
the basic construction elements of a cell for the
assembly of Ca®*-storage organelles. However, does
the relative simplicity of their construction elements
lead to a uniform structure of Ca®* stores? Indeed, un-
til some years ago, the well-known role of the sar-
coplasmic reticulum as a Ca® * store of muscle cells was
thought to be uniformly assumed by its presumed
counterpart, the endoplasmic reticulum (ER), in non-
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Fig. 1. Models of Ca”* -storage organelles and their relationship with
the endoplasmic reticulum in various cellular systems. Proteins of
Ca?* -storage organelles are coded as follows (see also text): fast-type
Ca’*-ATPase = Al; non-muscle slow-type Ca?*-ATPase = A2b;
putative 140 kDa Ca®* pump of adrenal chromaffine cells = A3;
skeletal muscle calsequestrin = Bl; calreticulin = B3; unknown =
Bx; Ryanodine receptor = CI; Ins(1,4,5)P; receptor, neuronal form
= C2a; Ins(1,4,5)P; receptor, non-neuronal form = C2b. The model
depicted in panel A shows the generally accepted model of the skeletal
muscle sarcoplasmic reticulum. The other panels are partially
speculative adaptations of experimental data in non-muscle. cells.
Neutrophils (panel B, [36]) are devoid of endoplasmic reticulum and
contain only one type of Ins(l1,4,5)P;-sensitive Ca®* store
(=calciosomes). In chicken Purkinje neurons (panel C, [42]) smooth-
surfaced cisternae of the endoplasmic reticulum might serve as
Ins(1,4,5)P;-sensitive Ca®* stores and a calsequestrin containing
compartment as Ca?*/caffein-sensitive Ca?* pool (CSCP). In
adrenal chromaffin cells (panel D, [14]), the entire endoplasmic
reticulum, endowed with a putative 140 kDa Ca2* pump might serve
as Ins(,4,%)P;s-sensitive Ca® * store, while a separate organelle, en-
dowed wit’i ite non-inuscle slow-iype Ca®*-ATPase might serve as
Ca’* /caffein-sensitive Ca®>* pool (CSCP).
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muscle cells. Subcellular fractionation, as well as mor-
phological studies in some cellular systems, were in
favour of this hypothesis (for review see [33]).
However, some old and many new results suggest that
this hypothesis is too simplistic.

(i) The sarcoplasmic reticulum is not a muscie
analogue of the ER, but rather a specialized in-
traceliular organelle containing a highly specific subset
of proteins. The ‘sarcoplasmic reticulum is probably
formed by ‘budding off’ from the ER [34].

(ii) Some non-muscle cells with entirely normal in-
tracellular Ca®* stores, e.g. neutrophils and platelets,
synthesize only a few proteins and accordingly contain
very little ER. In particular, mature neutrophils are vir-
tually devoid of ER [35,36]. Thus, even if their Ca®*
stores stem from the ER, they must somehow be able to
lose selectively the protein synthesizing part of the ER
without losing the Ca?* -storing part. Not surprisingly,
studies in these ER-poor cell types have always iden-
tified structures other than the ER as Ca? * -storage sites
(dense tubular system in platelets and calciosomes in
neutrophils) [36-38].

(iii) Many recent subcellular fractionation studies in
various cell types found no correlation between the
distribution of ER markers ‘and Ins(1,4,5)P;-induced
Ca?™* release or Ins(1,4,5)P3 binding (for review see
[5,6]). Again, this does not exclude a role of the ER in
Ca’* storage, as the ER breaks during homogenization
and a subfraction of the ER, involved in Ca®*
homeostasis, might have been purified. However, the
latter results are not compatible with the whole ER be-
ing the Ca®* store in these cell types.

(iv) Functional studies in various cell types suggest
the existence of various intracellular Ca?* stores: (a)
Ins(1,4,5)P3-sensitive Ca®™* stores, i.e. Ca®* stores that
release Ca’* in response to Ins(1,4,5)P3, presumably
via the Ins(1,4,5P; receptor; (b) Ca’?*/caffeine-
sensitive Ca®* stores, i.e. Ca®* stores that release Ca®*
in response to [Ca®*); elevations and to caffeine,
presumably via the ryanodine = receptor; (¢)
Ins(1,4,5)Ps-insensitive and Ca?*-insensitive Ca®*
stores, No physiological release mechanism for this type
of Ca2* storeis known. In many cases these stores seem
to be physically separated, as Ins(1,4,5)Ps;-induced
Ca’* release does not affect the Ca®* content of the
Ca’* -sensitive Ca®™ store and vice versa. The idea that
all of these stores are contained within the ER is dif-
ficult to reconcile with the concept that the ER is a con-
tinuous endomembrane system.

(v) Morphological studies on the subcellular distribu-
tion of the non-muscle 100 kDa Ca’®*-ATPase in
various cellular systems show a pattern clearly distinct
from the ER [14,39].

(vi) Morphological studies on the subcellular
distribution of calreticulin in various cellular systems
show an ER pattern in some cell types {7,20] and a pat-
tern different from the ER in other cell types [40].

227



Volume 285, number 2

(vii) Morphological studies on the subcellular
distribution of the Ins(1,4,5)P; receptor in Purkinje
neurons show this protein highly concentrated in
smooth-surfaced cisternae of the ER, but not in the
rough ER [41].

It is impossible at this point to propose one unifying
hypothesis that explains the contradictory observations
in different cell types. However, one might consider
that the seemingly conflicting results are due to a
‘customized’ assembly of the basic construction
elements of Ca%*-storage organelles in differen: cell
types. Although there is no proof for such an extreme
individualism of cells with respect to Ca?*-storage
organelles, this possibility deserves attention. In order
to- illustrate this putative heterogeneity, I will assign
codes to the ©basic construction elements of
Ca®* -storage organelles:

(A) Ca’* pumps: fast-type Ca’*-ATPase = Al; slow-
type Ca’*-ATPase = A2a; non-muscle slow-type
Ca?*-ATPase = A2b; putative 140 kDa Ca** pump of
adrenal chromaffine cells = A3; unknown = Ax

(B) Ca’*-storage proteins: skeletal muscle calsequestrin
= BI; cardiac calsequestrin = B2; calreticulin. = B3;
endoplasmin/grp94/ERp 99 = B4; unknown = Bx

(C) Ca’*-release channels: Ryanodine receptor = Cl ;
Ins(1,4,5)P; receptor, neuronal form = C2a;
Ins(1,4,5)P; receptor, non-neuronal form = C2b;
unknown = Cx

In addition, I will assign a code for the relationship of
the Ca®*-storage organelle with the ER.

(E) Relationship ER/Ca’* store: identical with the
rough ER = El; specialized portion of the smooth ER
= E2; not part of the ER = E3; relationship with the
ER not known = Ex

On the basis of this code, the fast-twitch skeletal mus-
cle sarcoplasmic  reticulum would be an
Al,B1,B3,C1,E3 Ca®* store. Calciosomes as described
in neutrophils and related myeloid cells [36] would be
A2b,B3,C2b,E3 Ca®* stores. The two Ca® * stores pro-
posed in adrenal chromaffin cells [14] would be
A3,Bx,C2b,El (Ins(1,4,5)P;-sensitive Ca®?™* store) and
A2b,Bx,C1,E3 (Ca®* /caffein-sensitive Ca?* store).
The potential spatial organization of some of these
Ca®* stores is schematically represented in Fig. 1. (The
possibility of a differential spatial organization of
Ca?* -uptake sites and Ca?* -release sites, as for exam-
ple seen in sarcoplasmic reticulum, is not taken into ac-
count (see [6]). In summary, despite many new in-
sights into the molecular mechanisms of Ca’”
homeostasis, our knowledge of the structure of
Ca?* -storage organelles remains limited. The apparent-
ly conflicting findings obtained in various cellular
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systems might indicate tissue-dependent heterogeneity.
Future ‘biochemical and morphological studies, using
specific antibodies against functionally important pro-
teins of Ca?* -storage organelles, will be necessary for
the better understanding of the structure of
Ca?* -storage organelles.
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