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WC havrc~i~ploycd 1sN und*‘P NMR techniques tarhtlrnctcrixc \hccen~urmalionr of trimcthoprim (TMPVE. rulidihydrorohIla rcductttm @!iPRI 
cumplcxea in the presence und absence of NADPH ctnd NADP” q A ringlc mnfrrm:triun wti4 olx6rved for TMPIBIWL NADP’J’BnFR, NA~Pf’~l 
BHFR, end TMP/NADPHIDHFR complexes. In the termtry complex 0f’TMPINADP’IBblFR both lhc ‘sN end a’P slpcctra revculed the prcxclrca 
a[ IWO conformationr, kiowcver, rhc conrorm;ttionr al’ TMP and NADP* in the termtry complex mrty not be correlated, raultin(g in the Possible 

cxiarcnce of four canformotiona f-or lhs prolcin tcrnurycomplcx. 

Dihydrofolatc rcducrarc; E. co/i; Trimcthoprim: Conli~rmation: NMR, IrN, &‘P. NABP 

1, INTRODUCTION clcvated from 7.6 in free TMP to above 10, t.he p& of 
DHFR (5,6,7,&tetrahydrofolate:NADP” oxidorc- the inhibitor bound to the mutant enzymes is lowcrecl to 

ductasc, EC 1.5.1.3.) catalyzes the NADPH-dcpendcnt a value below 4.0, NMR results further showed that the 
reduction of 7,&dihydrofolatc (H2F) to 5,6,7,8-tetra- ternary complex of TMP with L. cusei DHFR and 
hydrofolatc (HJF) [l]. The latter participates in the syn- NADP* exists in two conformations [8]. DHFR from 
thesis of thymidine and some amino acids. Depletion of E. roti and L, casei have an amino acid sequence 
the HJ,F pool results in the cessation of cell growth and homology of less than 30070. However, X-ray diffrac- 
can lead to the eventual cell death. Besides its bio- tion investigations revealed that the overall backbone 
chemical importance, DHFR is also an important geometries of the two bacterial reductascs arc almost 
therapeutic target enzyme for a group of antifolate identical 121, In contrast, NMR studies detected two 
drugs, notably trimethoprim (TMP), methotrexate, and conformations for the binary complex of L. cad 
pyrimethamine, for the treatment of cancers, malaria, DHFR with folate [$I, while only a single conformation 
bact,crial infections and other diseases. is observed for the E. coli DHFIVfolatc complex [I)]. It 

High-resolution X-ray crystal structures of binary is therefore of interest to compare the conformational 
TMP/DHFR and ternary TMP/DHFR/NADP’(H) aspects of these two species in other complexes. In this 
complexes from several bacterial and mammalian letter we report our initial results of 15N and “P NMR 
species have been determined [2,3]. Results of NMR studies of the conformations of TMP bound to E. coli 
studies have shown that TMP is protonated at N-l when wild-type DHFR. 
bound to DHFR from Lactobacillus cusei [4], bovine 
liver [S], Streptococcus faeciun? [S], and Escherichia 2. MATERIAL AND METHODS 
cob’ RT500 [6]. Convincing evidence which showed that 
the drastic increases of p& for TMP is the result of 

Wild-type E, co/i DHF’R was isolated from an DHFR over. 

hydrogen bonding between N-l and the carboxyl group 
producing E. co/i strain carrying multiple copies of the pUC8 plasmid 
(a generous gift of Dr. E. Howell of the University of Tennessee). 

of the aspartic residue at the active site was provided by DHFR was isolated and assayed according to Baccanari et al. [IO]. 

a 13C NMR study of [2-‘3C]TMP in complex with two Enzyme purity was checked with denaturating SDS-gel elec- 

E. codi mutant enzymes in which Asp-27 is replaced by 
trophoresis. Protein concentration was determined by the method of 
Bradford using Pierce protein assay reagent (Pierce Chemical Co,) 

asparagine and by serine, respectively n]. While the [ill. 
pKn of TMP in complex with the wild-type enzyme is The samples used for solution NMR studies contained 1.5-2.0 mM 

of enzyme in 50 m-M phosphate (“N NMR) or IO riiM Tris-HCI (jlp 
NMR) buffer, 100 mM KC1 and 1 mM EDTA in DzO. Specifically 

Correspondence ac/dk?ss: T.-h. Huang, School of Physics, Research labeiied TMP was dissolved in DMT.9 and added in appropriate 
Center for Biotechnology, Georgia Institute of Technology, Atlanta, amounts to the enzyme solution in microliter quantities. Values of pH 
GA 30332, USA. were direct readings (without correction for deuterium isotope effect) 
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tram an Orion model Itl I pH meter ecBlipp<d wllh an I nllold 60)0.;l 
electrode, All ih~ soladon NMR spe~:lra were obtained with a Varian 
XL.400 spc~clram¢tet op{raltn~ al 161.g92 MHx for s!P ~nd 40'2147 
MIq~ for "N. E,~perimenlal t~oftdilions s~er¢: ~,laltl¢ puh¢ t~l¢l'* flip- 
Ptalt anltle] e,sl~rimel~( wldl W A L T Z ,  I6 de¢oupli~il= H~¢zral wtddt 

$000 H~ [~P) or ~I l0 Hx finN} at 16k dam point resolution, gee:y- 
¢te time ~ I .~ ,~ ~=Pl lind 1,2~ (~N). Spe~tr¢i were obtained ttt .2~*C, 

'~N chemical shirts were referenced to external  0 I M ~NH=CI in 0.l 
N HCI, )~P chemical ~htflt were rerereneed Io external  phosphate  
sam pie at  pH ~ 8.0,  

3, RESUL' fS  AND DISCUSSION 

Fig, ! shows five proton-decoupled solut ion t~N 
NMR spectra o f  [l ,3,2,amino.~SN~lTMP in various 
protein complexes: ( i ) T M P / D H F R ,  pH = 6,8; (ii) 
T M P / N A D P H / D H F R ,  pH  =7,3;  (iii) T M P / N A D P * /  
DHFR,  pH '~ 6 3 ;  ( i v ) T M P / N A D P ' / D H F R ,  pH 
7.4; and (v)TMP/NADP*/DHFR, pH = 8.4.  The 
resonances due to free T M P  can be identified from their 
shift with pH and are marked with a x The other 
resonances can be readily assigned to the three nitro- 
gens based on their chemical shifts as determined above 
and assigned previously [12]. The chemical shift o f  the 
N-I resonance is very close to that of  the p ro tona ted  
fo rm and is nearly invariant in the pH range of  6.4-8.4, 
suggesting that the pea o f  bound TMP is much higher 
than 8.4 and N-I is the p ro tona t ion  site, similar to that 
found in the L. easel DHFR complex [12]. The  increas- 
ed pKa of  TMP bound to L, easel DHFR has been inter- 
preted to be due to the interaction between N-  1 nitrogen 
and the carboxyl of  Asp-26. Therefore,  our  results sug- 
gest that such an interaction is retained when TMP  is 
bound to E. coil DHFR, presumabb between N-I and 
the carboxyI o f  Asp-27. 

For  the T M P / D H F R  binary complex (Fig. la) three 
resonances due to the three nitrogens were observed, 
Suggesting that T M P  is:bound in a single conformat ion  
in the binary complex. Similarly a single conformat ion  
was observed for the ternary complex o f  T M P /  
N A D P H / D H F R  (Fig. lb).  For the ternary complex o f  
T M P / N A D P + / D H F R  (Fig. lc-e)  the ~N NMR spec- 
t rum clearly showed the presence of  two resonances for 
each o f  the three nitrogens at their respective chemical 
shift regions. The  chemical shifts o f  these resonances 
exhibit only slight variation with pH.  Thus,  the ternary 
complex in solution can be assigned to two conforma-  
tions, designated as I~ and I2. The relative populat ion o f  
a given conformation can be determined by dividing the 
intensity o f  each resonance by the total intensity of  a 
given nitrogen. From the intensity variations with pH 
one can readily assign a given resonance to a particular 
conformat ion.  Thus at pH  7.4 the resonances at 63.3, 
113.2 and 180.0 ppm are assigned to conformat ion It 
and those at 59.3, i i 1.5 and  179.0 ppm are assigned to 
conformat ion 12. The variation with pH o f  conformer  
I~ is shown on Fig. 3. The largest difference in chemical 
shift between the two conformat ions  occurs at the 
2-amino nitrogen (4 ppm) while the N~ nitrogen ex- 
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Filb I. ~N N M R  spc~:traor[I,3,2.aminoJ~N~JTMP in ~omplex with 
D H F R  in Ihe absence and pre~ence of  cofa~zors, NADP"  and 
N A D P H ,  N M R  samples  contain I m M  DHFR in 50 m M pi~osphate 
buffer, 10t} mM KCI, I mM EDTA in D.,O. Spe¢~r= wet~ taken at 

22*C. 

periences the least (! ppm). The large chemical shift dif- 
ference of  4 ppm at the 2-amino nitrogen is hard to be 
reconciled on the basis o f  ring current shift a lone and 
must  contain contributions f rom other sources such as 
strength o f  hydrogen bonding. From the Hnewidths o f  
these resonances the rate of  interconversion between 
these twoconformers  are estimated to be less than 5 s-  t 

Fig. 2 shows a set of ~tp NMR spectra of  various 
c o f a c t o r / D H F R  complexes, In the dianionic form the 
2 ' -phosphate  resonates at between I and3  ppm and the 
pyrophosphates resonate at between -~ II and --17 
ppm [13], The alp NMR spectra of  the binary com- 
plexes of  N A D P * / D H F R  (Fig. 2a) and N A D P H /  
D H F R (Fig. 2b) consist of  three resonances, correspon- 
ding to the 2 ' -phospha te  and the two non-equivalent 

2' .ohosolaate l~:x/.g ablh~tll~ 

~ L  {a NADP~ IDHFR . / " t  
, H .  e 0  . . /  , . , , , , . . . j  \ 
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Fig, 2. 3Jp N M R  spectra of  N A D P  + and N A D P H  bound  to  E. colt 

D H F R  in the presence and  absence o f  TMP.  Samples contain 1 m M 
D H F R  in l0 mk, l T r i s  buffer ,  100 m M  KCI, ! mM EDTA in D:O.  

Spectra were taken at 10°C, 
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pyrophosphat¢ resonance, The 2' .phosphates resonate 
at similar frequency at 1.69 and 1.67 ppm for NADP"  
and NADPH, respectively. However, tl~e 
pyrophosphates of the two complexes are very dlf .  
ferent: - 12,~ and - 15.3 ppm for NADP ~ and - 15.0 
and - 16,g ppm for NADPH,  Thus the conformation 
o f  the pyrophosphate of tl~e two complexes are dif- 
ferent. At  pH between 6,3 and 8,4 (FIB, 2c-t'), two 
resonances for the 2'-phosphate and three resonances 
for the pyrophosphate were observed for the ternary 
complex of TMP/NADP*/DHFR,  From the intensities 
of these resonances, obtained by integration for the 
pyrophosphale resonances or by deconvoltltion for the 
2'-phosphate resonances, we can readily assign them to 
two conformations, design;:te~ as C~ (1.69, - 15,4, and 
- 16.1 ppm) and C= (I.49, -12,9,  and - 15,4 ppm), 

The variation with pH of the C= conformer population 
is shown on Fig. 3. This assignment is in agreement 
with that of Birdsall et al, [14]. According to this assign. 
merit, NADPH is in conformation C~ in both the binary 
and ternary complexes while NADP* is in conforma- 
tion Cz in the binary complex and exists in a mixture of 
C= and C= conformations in the ternary complex. At 
low pH the two conformers exist in roughly equal 
populations. Raising the pH favors conformation C~. 
This ~'P MN R pattern is very similar to that observed in 
the ternary complex of  TMP and NADP* with L. casei 
DHFR [141. A major difference between the two en- 
zymes is the observation of two resonances for the 
2'-phosphate in the E. coil enzyme complex while only 
a single resonance was detected for the L .  easel com- 
plex. 

Since both TMP and NADP* exist in two conforma- 
tions in the ternary complex of T M P / N A D P * / D H F R  
the protein complex can potentially exist in two to four 
conformations, depending on whether the conforma- 
tions at TMP and NADP ~" binding sites are correlated. 
We have investigated this question by examining the 
change with pH of the relative populations of the con- 
formers (Fig. 3). The data points presented in Fig; 3 are 
the averaged integrated (or convoluted) intensities of I~ 
(63.3, 113.2, and 180.0 ppm resonances on the tSN spec- 
tra) and C~ (1.69 and - 15.4 ppm resonances on the 3tp 
spectra) resonances as described above. For TMP, con- 
formation I, increases from 42 ± 5°70 at pH 6.3 to 63 
± 5o10 at pH 8.4. Whithin the same pH range, confor- 
mation C[ increases from 57 _ 5°1o to 88 ± 8010. Fur- 
thermore, the change in the distribution of the two con- 
formations occurs at lower pH range for the TMP 
moiety and at higher pH range for the NADP* moiety. 
Consequently, even though the distribution of the two 
conformations for the two ligands are similar at neutral 
pH, they are quite different at pH 6.3 and  8.4. Thus it 
appears that the conformations at the TMP and the 
NADP "~ binding sites may be affected by different 
groups with substantially different pKa. The implica- 
tion of this observation is that the protein ternary corn- 
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Variation with pH of |h~ ipoplJlltliOl1~; of ~:onform~lllons Tt 
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plex may be able to  adopt up to four conformations. 
The relative populations of these conformations are 
pH-dcpendent. We should point out that significant 
changes in NMR chemical shift may result from small 
changes in atomic position. Additional experiments are 
in progress for characterizing these conformations. 
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