
I. INTROBUCTION 

Protein ghosphorvlation at trrosinc residues has been 
implicated as an important rcg~latory component in 
cell growth, differentiation, malignant transformation 
by certain viruses and in signal transduction [l-4], The 
lcvcl of ghosphorylation of substrate proteins is deter- 
mined by the relative activities of protein kinases and 
protein phosphatascs. The study of protein phospha- 
tascs in general has received much less attention as com- 
pared to that of protein kinascs, This was mainly due to 
the belief that protein phosphatascs simply reverse the 
effects of protein kinascs by dephosphorylating the 
substrates constitutivcly. Recent findings suggest that 
this may not be the case with many protein-serine 
phosphatases as well as with PTPases [5,6], certain cell 
cycle genes and a transcriptional regulatory gene code 
for protein-serine phosphatases [5]. The CD45 molecule 
which is a receptor-like transmembrane protein, has 
been found to have PTPase activity [9,8]. These fin- 
dings suggest that phosphatases themselves might play 
central and specific roles in cellular physiology, The 
role of non-receptor-type PTPases, their mode of 
regulation and the substrates on which they act are also 
not known. PTPase activity is widely distributed in 
various tissues [9,10]. Rat spleen and brain are a rich 
source of this activity [9,10]. The genes for several 
receptor-type PTPases have been isolated [ 1 I- 151. The 
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non-receptor-type PTPases which have been analyscd 
for their cDNA include placental PTPase Ib [l&17], 
PTPase 1 from rat brain [ 181 and a PTPasc from T cells 
[ 191, An essential virulence determinant of Yersinia (a 
bacterium which is a causative agent of plague) has been 
shown to be a PTPasc [20]. Here we report the isolation 
of a cDNA clone coding for a PTPasc of 363 amino 
acids which shows homology in its non-catalytic do- 
main with the basic domains of transcription factors 
Fos and Jun which are required for binding to DNA. 

2. MATERIALS AND METHODS 

2.1. Corrsrrucriotr cirrd screouhig of cDNA libtury 
A cDNA library was constructed in Agt I I from poly (A)“RNA us- 

ing cDNA synthesis and cDNA cloning systems obtained from Arncr- 
sham. Total RNA was isolated by dlc acid guanidiniuru thiocyanate 
method (211, Poly (A)*RNA was prepared by two cycles of binding 
lo oligo (dT) cellulose [22]. The ullamplificd cDNA library was 
screened [22] using nick translated &o RI-&r I fragment of T-cell 
PTPasc cClNA [ZO]. T-cell PTPase cDNA was kindly provided by Dr 
D&E, Cool (University of Washington, Seattle, USA). The hybridiza- 
tion for screening the cDNA library was carried out at 60°C with S x 
SSPE (1 x SSPE = 0.15 M NaCl, 10 aitvt sodium phosphate, pN 7.4, 
1 mM EDTA), 0.1% SDS, 5x Denhardt’s (O,l% Ficoll, O,l% 
polyvinyl pyrrolidone, 0.1% GA), 0.1 mg/ml denatured salmon 
sperm DNA [22]. Fibers were washed at 50°C in I x SSPE, 0.1% 
SDS. 

2 I 2. DNA sequencing 
Nucleotide sequence of the cDNA inserts was determined using the 

dideoxy chain-termination method of Sanger 123) as modified for 
double stranded DNA by Chen and Seeburg [24]. The cDNA. inserts 
iclcaaed from hgri I clones were subcloned in plasmid pGEM3Z for 
sequencing. The complete nucleotide sequence of the full length 
cDNA clone was assembled by sequencing various restriction 
fragments and smaller clones. 
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3. RESULTS AND DISCUSSl8N 

A rat spleen cDNA library (hgr 11) was screened with 
rhc Eco RI-Psr I fragment (1,38 kb) of human T-cell 
PTPase cDNA. This fragment contains the entire cod- 
ing region for PTPesc. The screening of over 2oQ 000 
rccombinants produced 3 positive clones, one of which 
(PTP-S) contained a full lenyrh cDNA insert of 1.5 kb 
(Fig. 1). The orher two clones were smaller in sine and 
corresponded to nucleotidcs 254-884 (clone 2) and 
750-1287 (clone 3) of the largest clone. The nucleotide 
sequence showed an open reading frame coding for a 
polypeptide of 363 amino acids. The first ATG codon 
may serve as the translation initiation codon at position 
26 although the sequence surrounding it does not match 
perfectly with the proposed translation start consensus 
sequence MGNNATGG [25j. The open reading frame 
is terminated by a stop codon TAA at nucleotide 1115. 
A polyadenylation signal AATAAA is present at 
nucleotide 1368. 

The PTP-S shows a high level of homology with 
human T-cell PTPase in the catalytic domain [ 191. Out 
of the first 275 amino acids which include the catalytic 
domain, 261 are identical (95070 homology).in the two 
proteins. This high level of homology suggests that 
PTP-S may be a rat homolog of T-cell PTPase. A com- 
parison of the carboxy-terminal sequence of PTP-S in 
the non- catalytic domain with human T-cell PTPase 
(Fig. 2) shows that there are 3 large deletions after 
amino acid 288 (19 amino acids), 308 (5 amino acids) 
and 363 (28 amino acids). These carboxy-terminal dif- 
ferences are perhaps not due to cloning artefacts since 
one other independent clone also had the same sequence 
(clone 3, nucleotides 950-1287)l. The C-terminal dif- 
ferences between PTP-S and human T-cell PTPase may 
be due to alternative splicing. 

In the carboxy-terminal region outside the catalytic 
domain, t,here is a region rich in basic amino acids. This 
basic region is organised as cluster-spacer-cluster in the 
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binding prorcinn which function us trunlrrigrion t%C-letoi=s 
[27j. An uligmrrrent ef rhc carboxy-trrminztl 54 nmirro 
at‘idd of the PTP-S with ad&mcnrr t3f Ihd Foa [2Sj and 
fun 129) prcstcins conrainlng Ihd basic domain ix ahawn 
in Fig. 3. CM of 37 re:2ld~IcsI of Fox prorcin, I# arc idcn- 
ticnl with PTPsS and 5 c~krr rcxidrrrv arid similnr in 
charartcr. .Tun pratcin xhawx 15 residues (out af 30) 
which are idcniical with P”TP$ rend 6 arhcr rrrcidticx arc 
similar. The level of humola~y wax also arxesscd by 
comparing tlrc alignment ?cords abcaincd by uxirry rhc 
pragrnm ALIGN as described by Dayhoff ef et. [26), 
Thcsc scored were similar for ct\ch of thd 3 pairs; PTP-S 
wirh Fcna (3.34), PTP.S with .lun (4.18) and Far with 
Jun (3.49). Thus rhc lcvcl of homology betwcerr PTP-S 
and Fos (or Jun) ir the same as between Fos and Jun in 
the basic regions. The gene coding for PTP-I (or 
placental PTPasc lb) does not possess any such bnaic 
domains in the non-cntalyric region of the molecule as 
shown in Fig. 2. However this basic region is conserved 
in human T-ccl1 PTPnsc (Big. 2.), 

In order to confirm that this cDNA clone codes for 
enzymatically active PTPase we have expressed it in E, 
co/i. The el3NA was cloned after appropriate modifica- 
tion (to align the reading frame) in E. cm/i expression 
vector pKK 233-2 which uses a hybrid promofor lrc. 
The strategy for construction of pKK-PTP is describecl 
ill section 2. The E. coli cell extracts containing control 
plasmid do nor show any derectable PTPasc activity 
whereas cells expressing pKK-PTP showed significant 
PTPasc activity (Fig. 4), Complete dcphosphorylation 
of the substrate could be obtained if rime of incubation 
or the amount of extract was increased (not shown). 

Expression of the transcripts for PTP-S was studied 
by Northern blot analysis of mRNA or total RNA 
isolated from various eat tissues. A major transcript of 
about 1.9 kb was observed in spleen, brain and thymus 
(Fig. §A) and in some other rissucs. The size of this 
transcript is in agreement with the size of the cDNA in- 
sert. When an identical RNA blot was analyscd by a full 
length T-cell PTPase probe, a 1.7-kb transcript was 
observed; the result was same as that obtained with 
PTP-S probe (figure not shown). These results suggest 
that PTP-S is the rat homolog of human T-cell PTPase, 
The high level of homology between the two supports 
this conclusion. 

The expression of PTP-S transcript was compared in 
splcnic lymphocytes with that in peritoneal macro- 
phages. Surprisingly macrophages showed a much 
higher level of PTP-S transcripts than lymphocytes 
(Fig. SC). The results of expression studies suggest that 
this PTPase does not show tissue- or cell-type specifici- 
ty although levels of transcription show variability. 

In order to see the effect of an inhibitor of protein 
synthesis on the expression of PTP-S transcripts, rats 
were injected with cycloheximide (50 mg/kg body 
weight) and RNA was isolated from spleen and thymus 
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Fig. 1 Nucleotide and deduced amino acid sequence of cDNA coding for PTPase isolated from a rat spleen cDNA library (PTP-S). 

CPTP-S) GAKYTKGDSWIPNR~-.--~--~~--~~---..?MTEKYNGKRIG~~D~KLTG-.---LN 310 

CPTP*T) . ..CI....S.. K.UKELSKEDLSPAFDH§PNKt.......N...L.E.....DRClG.. 354 

CPTP*1) . ..Flll... SV.DPUKELSHEDLEpPPgHVPPPPRPP.RfLEPHNGKCKEL~§NHaUVS~ 336 

(PIP-%) SKVPDTVEESSESILRKRIREDRKATTABKVBBMRQRLHET~RKRKRPRLTDY 363 
CPTP.7) ..MO..M..N...A..,..........,.......L.....N......~LfYDPiLTKHEr 394 
CPTP-1) ESCE.EDlLAR.ESRAPS.AVH§HS§HS.Dl~VRKRHWG~GLG§A~ASWP.~~ELSpT~~ 398 

Fig. 2 A comparison of amino acid sequence of PTP-S with T-cell PTPase (PTP-T) and rat brain PTPase (PTP-I) in the carboxy-terminal non- 
catalytic region. Gaps introduced for alignment are indicated by dashes. Dots indicate identical residues. 
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Fig. 4 Expression of PTP-S in E. co/i regulated by the trc promotor. 
(A) ThecDNA for PTP-§ was cloned behind the hybrid m promotor 
as described in section 2. This construct contains 33 additional amino 
acids (shown here) before the initiator methionine of PTB-S. The re- 
maining 363 amino acids correspond to PTP-S. (B) PTPase activity of 
E. co/i extracts expressing PTP-S. Extracts from bacteria containing 
pKK-FTP (solid line) and from the control (broken line) carrying an 

insert in the opposite orientation were used. 

after 3 h and nnalyscd for expression of PTP-S tran- 
scripts. Treatment with cyclsheximidc resulted in about 
a l&fold increase in the level of 1.7 kb transcript (Fig. 
SB), In addition, r9 new transcript of about 3 kb was 
observed in cyclohcximidc-treated samples. This tran- 
script is perhaps coded by some other PTPase since it 
was not observed when a similar blot was probed with 
a probe lacking catalytic domain of PTP-S (nucleotides 
943-1495). No significant effect of cycloheximide treat- 
ment was observed on the expression of hck or ribo- 
phorin transcripts (data not ~hown)~ 

What is the function of clusters of basic amino acids 
in the non-catalytic region of PTP-S? Does the homo- 
logy with transcription factors indicate any functional 
significance? One possibility is that the clusters of basic 
amino acids might serve as a signal for localization in a 
subcellular compartment such as the nucleus [30]. In 
this connection it may be relevant to point out that 

CHX - -I- *- -I- 

Fig. 5. Northern blot analysis of RNA from various tissues and ceils 
using a full length PTP.S probe. (A) Northern blot of mFW4 (5 #g) 
from rat tissues. (B) Northern blot of total RNA (10 pg) from 
cycloheximide (Cl-IX) treated and control rat tissues. (C) Northern 
blat of total RNA (IO ag) from splenic lymphocytes and peritoneal 
macrophages. Splcnic lymphocytes were prepared by lysis of 
erythrocytes with ammonium chloride. Peritoneal macrophages were 
incubated at 37°C in tissue culture PetrLdishcs to remove non- 

adherent cells. 
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