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The ~r~~5~~~~~ mefunogaster developmental gene engrailed (en] is a member of a distinct subfamily of homeobox genes with a wide phylogenetic 
distribution. Here we report the use of reduced stringency polymerase chain reaction (PCR) to amplify and clone 8 genes related to en from 5 
vertebrate species, including representatives of the most ancient vertebrate lineages. Nucleotide and deduced amino acid sequence comparisons 
between mouse, toad, zebrafish, lamprey and hagfish genes reveal extensive evolutionary conservation, and suggests that 2 en-like genes have been 

retained in most vertebrate lineages. 
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1. INTRODUCTION 

The mouse and human genomes each contain two 
homeobox genes, En-l and En-2, closely related to the 
D. melanogaster segmentation gene engrailed (en). 
These genes, which presumably arose by gene duplica- 
tion, have diverged from each other, and from D. 
~efanog~te~ en, in both sequence and regulation [l-6). 

Here we report the results of a comparative approach 
to investigate the pattern of sequence divergence during 
the evolution of the vertebrate en-like gene. The 
polymerase chain reaction (PCR) was used to amplify 
and clone en-like homeobox genes from 5 vertebrate 
species, chosen to include representatives of all 3 extant 
lineages resultant from the deepest vertebrate radia- 
tions. Analysis of multiple recombinant clones from 
each species allowed insight into homeobox gene family 
evolution, and sequence conservation, during 
vertebrate radiation. 

2.MATERIALS AND METHODS 

Total DNA was purified from each species (mouse, Mus musculus 
strain CBA; clawed toad, Xenopus laevis; zebrafish, Brachydanio 
rerio; lamprey, Lampetraptaner~ hagfish, ~yx~negi~tjnosa) by stan- 
dard methods [7,8], and diaiysed versus 10 mM Tris-HCI, 1 mM ED- 
TA (pH 8) prior to use in amplification reactions. 

Using published sequences of D. melanoguster and mouse en-like 
genes, two conserved regions were identified: one within and one 
flanking the homeodomain. Two alternative positive strand 
oligonucleotide primers and two negative strand primers were design- 
ed to complement the encoding DNA sequences, and synthesized on 
a Milligen Biosearch 7500 DNA synthesizer. Primers A and C utilized 
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inosine to allow base pairing at variable sites; primers B and D includ- 
ed mixed nucleotide redundancies. The primers were: {primer A, 
positive strand) 5[] GAIAAGCGICCICGCACIGCCTTCAC 3[]; 
(primer 8, positive strand) %I GAVAAGCGGC- 
CGCGCACRGCCTTC 3[]; (primer C, negative strand) S[] 
TGGTTGTACAGICCCTGIGCCATGAG 3[]; and (primer D, 
negative strand) 5[] TGGTTGTACAGNCCCTGNGCCATCAC 3[], 
where N = A,C,G or T; R = A or G; V = A,C or G; I = inosine. 

DNA ~plification reactions were performed using a Techne 
PHC-2 programmable dri-block under conditions recommended by 
the suppliers of the Taq DNA polymerase (Perkin-Elmer Ltd and 
Promega Biotec). Following DNA amplification and electrophoresis, 
the major products were purified and cloned into plasmid vectors 
[9-l 11. Following transformation, multiple recombinant clones from 
each species were selected via blue/white screening and/or restriction 
enzyme digestion, before sequencing using T7 DNA polymerase and 
7-deaza dGTP sequencing mixes (Pharmacia LKB). Sequences were 
analyzed using CLUSTAL 1121, NIP 1.0 [13] and PHYLIP 3.2 (pro- 
vided by Dr J. Felsenstein, Seattle, WA). 

3. RESULTS AND DISCUSSION 

The PCR-based strategy employed in this study was 
designed to enable amplification of genes reiated to the 
D. meianogaster segmentation gene engraited. A major 
product of 233 base pairs was amplified from each of 
the 5 divergent vertebrates analysed (mouse, toad, 
zebrafish, lamprey, hagfish); as predicted if the primers 
had amplified DNA from an uninterrupted gene (or 

genes) containing an en-like homeobox. 
Following purification, modification, cloning and 

transformation of the major amplified product from 
each of these species, multiple recombinant clones were 
sequenced, and 8 en-like genes identified (two each 
from zebrafish, hagfish, and toad; one each from lam- 
prey and mouse). Six of these represent novel 
homeobox genes, whilst two classes of recombinant 
correspond to the previously reported genes mouse 
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a AGA CCC CAG CAG CTG AGC AGC GAG TTG GGC CTG MC GAG GCG CAG ATC AAG ATC TGG TTC CAG 

CCC CGA CAG ACC CTC CCC CAG GAG CTC AGC CTG MT GAG TCC CAG ATC AAG ATC TGG TTC CM 
CCC CGC CAG AGT CTG GCA CAG GAG CTC AGC CTG MC GAG TCT CAG ATC AA0 ATT TGG TTC CAG 
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CGA CGT CAG MC CTC GCC CGT GAG CTA AGC TTG MC GAG GCG CM ATC AAG ATT TGG TTC CAG 

AGG CGA CM CCC CTC GCC CAG GM CTG CGA CTC MC GAG GCT CAG ATC MG ATC TGG TTC CAG 
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Fig. 1. (A) Consensus nucleotide sequences (internal to the primers) from 8 vertebrate en-like genes cloned by PCR, aligned with D. melunogasrer 
en and mouse En-I. (B) Deduced amino acid sequences from (A). Dashes indicate identity with En; homeodomain residues are underlined; putative 

DNA sequence recognition helix. 

En-2 [3] and zebrafish En-2 [14]. To ensure exact se- 
quence determination, multiple independent clones 
from each gene were sequenced. Fig. 1 shows the con- 
sensus nucleotide and deduced amino acid sequences 
from the 8 en-like genes cloned in this study, aligned 
with D. melanogaster en and mouse En-l. 

Over the 60 amino acid region analysed, 38 residues 
are conserved between all vertebrate en-like genes clon- 
ed. The C-terminal portion of the homeodomain is 
most highly conserved, including a stretch of 12 in- 
variant residues. This extent of conservation, however, 

is less than in another subfamily of homeobox genes, 
the m&-related genes [IO]. We propose that the two X. 
laevis genes we have cloned are both homologues of 
En-I, since both share higher sequence identity with 
mouse En-l than with mouse En-2, and since the two X. 
laevis genes are almost identical (9 nucleotides and one 
amino acid differ over the amplified region). The two 
genes isolated may represent two En-l loci resultant 
from the recent tetraploidization of the X. luevis 
genome [15]; we therefore designate these genes En-la 
and En-lb. 

251 
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The sequence of one zebrafish gene isolated in this 
study is almost identical to that of a gene previously 
reported [14] and designated zebrafish En-2. Although 
our consensus sequence differs from this gene by two 
nucleotide differences, we believe the clones derive 
from the same gene and follow the previous ter- 
minology. We suggest the second zebrafish en-like gene 
is the homologue of En-Z. 

Further insight into vertebrate en-related gene evolu- 
tion can be gained by comparing the sequences obtained 
from the two jawless vertebrates examined, lamprey 
and hagfish. Two hagfish genes were isolated, both of 
which are clearly members of the en-like homeobox 
gene subfamily. The genes cannot easily be interpreted 
as orthologues of En-l and En-2; hence, to avoid this 
implicit assumption, we designate them hagfish En-A 
and En-B. 

In contrast to hagfish, we identified only a single en- 
like gene from the genome of a lamprey, despite exten- 
sive sequence determination (23 independent clones 
derived using primers A and D, and 8 clones using 
primers B and D, were all found to derive from the 
same gene). The lamprey En sequence shows some 
unusual amino acid differences from the gnathostome 
genes, several of which it shares with hagfish En-A. 

In conclusion, these data reveal that homeodomain 
sequences encoded by en-like genes have been highly 
conserved during vertebrate radiation, particularly dur- 
ing the radiation of the jawed vertebrates. The isolation 
of two distinct en-like genes from zebrafish parallels the 
situation in mammals, indicating that duplication of an 
ancestral en-like homeobox gene was an ancient event 
in vertebrate evolution. However, the more divergent 
hagfish en-like genes may have arisen by an indepen- 

dent gene duplication: a suggestion supported by the 
isolation of only one lamprey en-like gene. 
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