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It has been shown that, in the absence of dATP in the poly(dT)‘oligo(dA) template-primer complex, the rate of primer cleavage by the E. coli 

DNA polymerase I Klenow fragment equals 4% of polymerization rate, while in the presence of dATP it equals as much as 50-60s. NaF and 
NMP taken separately inhibit exonuclease cleavage of oligo(dA) both with and without dATP. The addition of NaF (5-10 mM) or NMP (5520 

mM) increases the absolute increment of polymerization rate 559-fold relative to the absolute decrement of the rate of nuclease hydrolysis of primer. 

This proves the assumption that not more than IO-20% of primer molecules, interacting with the exonuclease center of polymerase, are cleaved 

by the enzyme. Presumably, NaF and nucleotides disturb the coupling of the 3’-end of oligonucleotide primer to the exonuclease center of the 
enzyme. As the primers mostly form complexes with the polymerizing center, the reaction of polymerization is activated. 

Klenow fragment; NaF; Nucleotide; Activation and inhibition of activity 

1. INTRODUCTION 

FK is known to have polymerase and 
3 ’ -5 ’ -exonuclease activities. The distance between the 
binding site of the primer and FK exonuclease center is 
20-30 A [ 11. It is worthwhile finding new ways of selec- 
tive inhibition of the FK exonuclease activity as this en- 
zyme is widely used in genetic engineering. Previously 
[2,3] it was found that NMP- and dNMP-induced in- 
hibition of the exonuclease activity correlated with the 
stimulation of FK-catalyzed DNA polymerization. 

We have studied the effect of dATP, NaF [4] and 
NMP on the ratio of the rates of two FK-catalyzed reac- 
tions: polymerization and exonuclease hydrolysis. 
NMP and NaF induce both acceleration of polymeriza- 
tion and deceleration of exonuclease cleavage of the 
primer. The former effect, however, is by far more pro- 
nounced. 

2. MATERIALS AND METHODS 

Electrophoretically homogeneous FK with a specific activity of 
3.7 r IO4 U/mg was obtained as in [5]. 

Poly(dT), dNMP and dNTP were from NIKTI BAV (USSR), BSA 
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from Koch Light, MgCl2 and PEI-cellulose discs from Merck. ACm 

300 aminosylchrome sorbent from Novosibirsk State University 

(USSR) and [‘H]dATP (900 TBq/mol) from Izotop (USSR). Other 

reagents were of analytical grade. 

Syntheses of d(pA)ro and r(pA)io are described in [6,7]. Nucleotides 
were TLC-purified as in [8]. Poly(dT) . [3H]oligo(dA) was prepared 

by FK-catalyzed polymerization with d(pA)ia primer. The incorpora- 

tion of [‘HIdAMP into the primer was lo-20% of the maximal. 
Surplus [3H]dATP (180 TBq/mol) was removed by gel filtration. The 

FK activity was determined at 37°C. Reaction mixtures (15-100 al) 
contained 50 mM Tris-HCI buffer (pH 7.5), 10 mM MgCl2, 0.1 

mg/ml BSA, 40 mM KCI, I AJeo/rnl poly(dT), 20 PM r(pA)io or 0.4 

PM d(pA)ia, 20 pM [3H]dATP (I .5 gM in the case of d(pA)ir,). In ex- 
periments with poly(dT).[‘H]oligo(dA), the concentration of po- 

ly(dT) was 0.2 A&ml and that of [‘H]oligo(dA) was 80 nM. 1.5 pM 

dATP was used for [‘H]dATP, I80 TBq/mol). 
The reaction was initiated by the addition of 2-10 U/ml FK. The 

polymerising activity of the enzyme was measured according to the 
method of acid-insoluble precipitates as described in 181. The ex- 

onuclease activity was determined by 3 methods: (i) by testing the ac- 

cumulation of [‘HIdAMP by chromatography on F254 PEI cellulose 
discs as in [9], or (ii) by ion-exchange chromatography in ACiii 300 

sorbent as in [IO] and (iii) by measuring the decrease in the amount of 
label during trichloroacetic precipitation of poly(dT) [‘H]oligo(dA) 
as in [8]. In these 3 tests, a maximal amount of [‘HIdAMP was found 

to be up to lo-20% of that in poly(dT) [3H]oligo(dA). 

3. RESULTS AND DISCUSSION 

It has been shown that, in the poly(dT) . [3H]- 
oligo(dA) complex, the rate of exonuclease hydrolysis 
of primer by FK equals 4% of the rate of polymeriza- 
tion and increases up to 50-60% under addition of 
[3H]dATP (see Table I). This is the evidence of a higher 
efficiency of the primer cleavage during polymeriza- 
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Table I 

The rates of incorporation of [3H]dAMP into the primer and of accumulation of free [3H]dAMP due to ex- 
onuclease hydrolysis 

Template-primer 
complex 

dNTP Incorporation of Accumulation of Rate of hydrolysis 
[“HIdAMP into 13H]dAMP due to versus rate of 
the primer hydrolysis, synthesis (To) 
(cpm/min ’ IO- ‘) (cpm/min ’ 10e3f 

I. Poly(dT) . 
oligo[3H]d(pA) 

2. Poly(dT) 
01igo[3H]d(pA) 

3. Poly(dT) . 
oligo[~HJd(pA) 

4. Poly(dT) d(pA)ta 
5. Poly(dT) . r(pA)to 

dATP 

13HJdATP 
13H]dATP 
[‘HJdATP 

0.21 

2.1 40* 

5.3 3.5 66 
8.5 1.0 12 

15.8 2.1 13 

*This value was calculated based on equal rates of polymerization for complexes 2 and 3; the difference between 
the rates of hydrolysis for complexes 2 and 3 (26%) characterizes the hydrolysis of the elongated primer. 

tion. As follows from Table I, the rate of [3HJdAMP 
accumulation observed with dATP is about 60% of that 
observed with [3H]dATP. Hence it appears that 
50-609’0 of [3H]dAMP is formed due to the hydrolysis 
of [3H]oligo(dA) before its elongation, i.e. the rate of 
hydrolysis of the primer before its elongation is equal to 
40% of the polymerization rate, while that of the 
elongated primer only equals 20% of the polymeriza- 
tion rate. This is in agreement with the data obtained 
for poly(dT) * d(pA)io and poly(dT) . r(pA)lo com- 
plexes, where the rate of hydrolysis of the elongated 
primer was equal to 12-13970 of the polymerization rate. 
The above facts may be explained by Paponikolau’s 
hypothesis [II] that polymerases may have two states 
during polymerization; with higher and lower exo- 
nuclease activity. Predominant hydrolysis of the primer 

before elongation is presumably due to the competition 
between its 3 ‘-end and dNTP for the polymerization 
site on the enzyme [IO]. 

Fig. 1 shows the data of the AMP and NaF effects on 
the poly(dT) - ]3H]oligo(dA) complex hydrolysis in the 
absence of 13H]dATP. Fig. 2 demonstrates the effect of 
these two substances on the FK-catalyzed polymeriza- 
tion and exonuclease hydrolysis in the presence of 
[2H]dATP. In all cases the increase in AMP and/or 
NaF concentrations brings about an enhanced inhibi- 
tion of hydrolysis and a 1.4-3-fold increase in the initial 
rate of pol~eri~ation. Virtually complete suppression 
of hydrolysis of adenylate primers in a complex with 

[NaFl .lO?M 

Fig. 1. Dependences of the initiat rate of FTC-catalyzed exonuclease 
hydrolysis on the concentrations of NaF ( 4 ;o) and AMP (x ;*) in the 
absence of dATP. The hydrolysis was tested by decrease of radioac- 
tivity in oligo[%]d(pA)lo (o;*) and by accumulation of [3H]dAMP 

(4 :x). 

1 IO 20 
[AMPI - 103, M 

Fig. 2. Dependences of the initial rates of FK-catalyzed polymeriza- 
tion (*;o) and exonuclease hydrolysis ( x ; A ) on the concentrations of 
NaF (0; v ) and AMP (*;x) in the presence of dATP for the po- 

ly(dT) . oligo 13HJd(pA) complex. 
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Fig. 3. Dependences of the initial rates of FK-catalyzed polymeriza- 
tion (0;‘) and exonuclease hydrolysis ( A ; x) on the concentrations of 
NaF (0; x ) and AMP (0; A ) in the presence of dATP for the po- 

ly(dT) 1 r(pA)re complex. 

poly(dT) is achieved at high concentrations of these 
ligands: 0.3-0.5 M NaF and lo-50 rnM AMP both in 
the presence and absence of [3H]dATP. The data of 
Figs 2 and 3 shows that, in the complexes poly(dT) * 
[3H]oligo(dA) and poiy(dT) - d(pA)lo, the rate of the 
label incorporation into the primer is increased 5-g-fold 
faster than the rate of [3H]dAMP accumulation is 
decreased. The effect is even more pronounced in the 
complex poly(dT) - r(pA)lo where this difference is 
40-fold, which may be due to the fact that r(pA)ro is not 
hydrolyzed [12]. The data suggest that the AMP- and 
NaF-mediated inhibition of the exonuclease cleavage of 
both initial and elongated primer goes the same way. 

Highly concentrated NaF (30 mM) is known to in- 
hibit numerous nucleotide- and polynucleotide- 
dependent enzymes. A selective inhibition of the FK ex- 
onuclease activity was first reported and described by 
Mikhailov et al. 141. 

Our results are in agreement with the assumption 
made in [14] that there is a competition between 
pol~erizing and exonuclease centers for the 3 ’ -end of 
the primer which constantly ‘migrates’ between the 
centers. A 5-40-fold excess of the increase in the 
polymerization rate over decrease in the cleavage rate 
proves that not more than 2.5-20070 molecules interac- 
ting with the exonuclease center is hydrolyzed during 
the life-time of the complex. The observed enhance- 
ment of polymerization, in our judgement, results from 
the NaF- and AMP-induced inhibition of complex for- 
mation between the 3’-end of the primer and ex- 
onuclease center when the primer is pushed towards the 
polymerizing center. The increased rate of polymeriza- 
tion is, therefore, a result of predominant complex for- 
mation with this center. 

NaF is shown to have no effect on K,,, for templates, 
primers and dNTP. Therefore it can be used for study- 
ing the interactions of these ligands with the FK 
polymerizing center under the conditions when their in- 
teraction with the exonuclease center of the protein 
does not affect polymerization. 
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