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Possible mechanism of nuclear translocation of proteasomes 
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Proteasomes (multicatalytic proteinase complexes), which are identical to the ubiquitous eukaryotic 20s particles, are localized in both the cyto- 
plasm and the nucleus, but the mechanism of their co-localization in the two compartments is unknown. On examination of the primary structures 
of subunits of proteasomes, a consensus sequence for nuclear translocation of proteins, X-X-K-K(R)-X-K(R) ( w h ere X is any residue), was found 
to be present in some subunits and to be highly conserved in the subunits of a wide range of eukaryotes. In addition, proteasomal subunits were 
found to bear a cluster of acidic amino acid residues and also a potential tyrosine phosphorylation site that was located in the same polypeptide 
chain as the nuclear location signal. These structural properties suggest that two sets of clusters with positive and negative charges serve to regulate 
the translocation of proteasomes from the cytoplasm to the nucleus, and that phosphorylation of tyrosine in certain subunits may play an additional 

role in transfer of proteasomes into the nucleus. 

Acidic amino acid cluster; Nuclear location signal; Proteasome; 20s particle; Tyrosine phos~horylation site 

1. INTRODUCTION 

Proteasomes are unusually large (A& = -750000) 
multi-functional enzyme complexes with a highly 
organized structure composed of many non-identical 
polysubunits of small size (ME = 21000-31000) with 
different charges (PI = 4-9) [ 1,2], They have been iden- 
tified as multicatalytic proteinase complexes with at 
ieast three different types of active sites catalyzing 
cleavage of peptide bonds on the carboxyl side of basic, 
neutral and acidic amino acid residues of proteins [3]. 
They are believed to plasy an essential role in an energy- 
dependent nonlysosomal proteolytic pathway, since 
their specific antibodies inhibit ATP-, ubiquitin- 
dependent proteolytic activities almost completely 
[4,5], and since they are converted to 26s proteolytic 
complexes by association with certain components and 
the resulting complexes catalyze ATP-dependent 
breakdown of ubiquitin-protein conjugates [6,7]. The 
size, shape and subunit multiplicity of proteasom~s 
have been found to be identical with those of ring- 
shaped or cylindrical particles of 20s [8,9], which are 
proposed to be involved in various basically important 
cellular functions, such as repression of mRNA transia- 
tion [ 101 and tRNA processing [ 1 I]. Therefore, pro- 
teasomal 20s particles are thought to be 
multifunctional enzyme complexes responsible for the 
metabolisms of both protein and RNA. 

Proteasomes and related 20s particles are known to 
be widely distributed in eukaryotes ranging from man 
to yeast [2,10,12]. They are abundant in various mam- 
malian cells and tissues, constituting about 0. l-l .O% 
of the total soluble proteins [ 131. The apparent half-life 
of proteasomes in liver was found to be 12-15 days, 
suggesting their slow turnover [ 141. These properties of 
proteasomes indicate that they belong to a family of 
proteins with house-keeping function and imply the 
general importance of their function(s). 

In this letter, we summarize data showing that pro- 
teasomes are located in both the cytoplasm and the 
nucleus of a variety of eukaryotic cells. On the basis of 
data on the primary structures of the subunits of pro- 
teasomes, we suggest that proteasomes are translocated 
into the nucleus by a nuclear signal-mediated transport 
pathway, and that their translocation may be regulated 
by interaction with two segments containing an acidic 
amino acid cluster and a nuclear location signal plus a 
tyrosine phosphorylation site present in certain 
subunits. 

2. NUCLEAR AND CYTOPLASMIC 
CO-LOCALIZATION OF PROTEASOMES 
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Proteasomaf 20s particles were first found in the 
soluble fraction of various tissues, but later also in the 
nuclei of various eukaryotic cells, as listed in Table I. 
For instance, the ribonucleoprotein particles named 
prosomes were first found to be associated with 
cytopiasmic mRNAs [lo], but recently they were also 
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Table I 

Nuclear and cytoplasmic colocalizations of proteasomes and related 
20s particles 

Name of particles Source hlethod of 
detection 

Refer- 

ence 

1. Donut-shaped 
miniparticle, 

2. 22s cylinder 
particles 

3. 5 ’ -pre-t RNAse 

4. Prosome 

5. Prosome 
6. Prosome 
7. Prosome 

8. Multicatalytic 
protease 

9. Proteasome 
10. Proteasome 

11. Proteasome 
12. Protea5om.c 

13. Proteasome 

human and rat 
cells electron microscopy 

XenoL1u.s laevls 
irnmunohistochernical 

Xenopus laevi.7 

and mammalian 
cells biochemical 

avian erythro- 
leukemic cell, immunocytochemical 

sea urchin immunohistochemical 
axolotl immunohistochemical 

ne\\ t immunohi,tochemicaI 

sea urchin biochemical 
Drosophila immunohistochemical 

rat and human immunochemical and 
liver biochemical 

rat fibroblasts immunocytochemical 
human leuhemic 

cells immunohistochemical 

human renal 
cancer cells immunohistochemical 

[IhI 

1171 

[Ill 

[I91 

PI 

1231 

[91 

~241 

WI 

found to be present in the nuclei of cells transformed 
with avian erythroleukemic virus [15]. Donut-shaped 
‘miniparticles’ were found to be present in both the 
cytoplasm and the nucleus of mammalian cells and to 
be distributed predominantly in the nuclei of tumor 
cells [16]. Likewise, the 22s cylinder particles of 
Xenopus laevis were demonstrated in the nucleoplasm 
as well as the cytoplasm of oocytes and transcriptional- 
ly active somatic cells [17]. Pre-tRNA 5’ processing 
nuclease of Xenopus laevis has been purified from the 
nuclei of oocytes as a highly homogeneous form with 
a similar structure as the 20s cylinder particles [I I]. In- 
terestingly, the distribution of proteasomes in the two 
subcellular compartments appears to be inter- 
changeable during oogenesis, embryogenesis and 
development in lower eukaryotic organisms, such as the 
sea urchin [18,19], axolotl [20], newt [21] and 
Drosophila [22]. 

Recently, we found that a highly purified nuclear 
fraction from rat liver contained an appreciable 
amount of proteasomes with similar proteolytic activity 
and immunoreactivity to those of proteasomes in the 
cytosolic fraction and that these proteasomes appeared 
to be loosely associated with nuclear components in the 
nucleoplasm [23]. Moreover, immunohistochemical 
staining of human liver showed that proteasomes were 
distributed densely in the nucleoplasm and diffusely in 
the cytoplasm of hepatocytes. About two-thirds of the 
hepatic nuclei stained strongly with anti-proteasome 
antibody, whereas the remaining nuclei did not stain, 

suggesting the rapid interchange of proteasomes bet- 
ween the nucleus and cytoplasm under certain 
physiological conditions [23]. We also observed that 
proteasomes were predominantly located in the nuclei 
of actively dividing rat fibroblasts [9] and various 
human leukemic and renal cancer cells [24,25]. This 
variation in the intracellular distribution of pro- 
teasomal 20s particles seems important in considering 
the physiological function of these particles. 

3. IDENTIFICATION OF NUCLEAR LOCATION 
SIGNALS IN PROTEASOMES 

Recent studies ha\,e shown that translocation of pro- 
teins into the nucleus is a multi-step process consisting 
of recognition and translocation events and that the 
rapid and selective sorting of nuclear proteins from the 
majority of other cellular proteins is determined by a 
structural signal included in nuclear proteins (for a re- 
cent review, see [26]). Chemical and genetic- 
engineering analyses of nuclear proteins and measure- 
ment of nuclear import of proteins after their microin- 
jection into living cells have shown that very short 
regions in the polypeptide chains of proteins are essen- 
tial for their translocation into the nucleus. The amino 
acid sequences of these regions are not identical, but all 
are rich in basic amino acid residues. Very recently, the 
consensus sequence X-X-K-K(R)-X-K(R), where X is 
any residue, was proposed as a nuclear location signal 
(NLS) [26]. This short signal sequence appears to be 
sufficient for nuclear translocation of proteins and is 
highly conserved in a variety of proteins imported into 
the nucleus, as shown in Table II. 

Since proteasomes are present in the nucleus as well 
as the cytoplasm, as described above, it was important 
to determjne whether proteasomes also contain a 
similar NLS sequence. Recently, we determined the 
primary structures of the fi\,e main subunits RC2 [27], 
RC3 [28], RC5 [29], RC8 [30] and RC9 [3 I] of rat liver 
proteasomes (consisting of at least thirteen subunits) 
and two subunits YCI [32] and YC’i-ru [32] of yeast 
proteasomes by recombinant DNA techniques, and 
found that certain subunits, such as RC3, RC9 and 
YC7-Q have a consensus NLS sequence, X-X-K-K-X-K 
(Table II), suggesting that proteasomes are transported 
from the cytoplasm to the nucleus via a nuclear signal- 
mediated transport pathway. U’e also determined the 
primary structures of several subunits of human pro- 
teasomes by cDNA sequencing and found that identical 
NLS sequences are present in the same positions as in 
the corresponding subunits of rat proteasomes (to be 
published), indicating that the sequence of the NLS of 
proteasomes has been highly conserved during evolu- 
tion. As shown in Fig. 1, the location of the signal se- 
quence differs in different subunits. This difference 
may be related with the topology of the signal in the ter- 
tiary structure of different subunits. Moreover, 
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Table II 

Consensus sequence for nuclear location signals in various proteins 
and certain proteasome subunits 

Nuclear protein or 
proteasome subunit 

Signal sequence 

SV40 large-T 
sv40 VP2 
Lamin A 
Histone HZB 
Adenovirus EIA 

Polyomavirus large-T 

126.PKKKRK-131 
318.NKKKRK-323 
415-VTKKRK-420 

29.GKKRSK-34 

283.SCKRPR-288 
279.PPKKAR-284 
190.SRKRPR-195 

Human c-myc 
Nucleoplasmin 
Nl 

321-AAKRVK-326 
165-QAKKKK-170 
547.DAKKSK-552 
53 1.VRKKRK-536 

Glucorticoid receptor (rat) 512.TKKKIK-517 
Interleukin-1 receptor 427.MVKKSR-432 
Cofilin 28.EVKKRK-33 
Rat RC3 48.TEKKQK-53 
Rat RC9 249.REKKEK-254 
Yeast YC7-cu 185.HFKKSK-190 

Data for various nuclear-imported proteins are quoted from a recent 
review by Roberts [26], except those for interleukin-1 receptor [36] 
and cofilin [37]. Data for proteasome subunits RC3, RC9 and YC7-a 
are from [28], [31] and [32], respectively. The numbers shown are 

residue numbers of the peptides in the respective proteins 

subunits RC3 and RC9 of rat proteasomes were both 
found to have an NLS motif. So far we have determin- 
ed the primary structures of only half the subunits. But 
similar signals may well be present in other subunits 
whose sequences have not yet been determined because 
some proteins such as polyoma T-antigen and Nl con- 
tain two or more sets of the NLS motif (Table II). 
Thus, multiple NLS may act cooperatively in nuclear 
accumulation [26]. 

RC2 

RC3 

RC5 

RC8 

RC9 

YCl 

YC7-a 

I I ’ 26: 

I .I 1 234 
/ 1 240 

I B 255 

5 261 

I q 4 288 

I 252 

+ t $ t t 4 

1 50 100 150 200 250 

Residue Number 

Fig. 1. Schematic representation of the location, of the nuclear 
location signal, acidic amino acid cluster and region containing the 
tyrosine phosphorylation site conserved in various proteasome 

subunits. The open and shaded boxes show the nuclear location 
signals (X-X-K-K-X-K, where X is any residue) and acidic amino acid 

cluster, respectively. The dotted boxes show segments homologous to 
the regions of a family of proteins phosphorylated with tyrosine 
kinase [34]. The closed circles show the positions of potential tyrosine 

Subunit Sequence 
- 

YCl 250.DDDEDEDDSD-259 
RC2 218DLEFTIYDDDD-228 

RC8 246-EEDESDDD-253 

RC9 241.EEEEAKAERE-250 

The numbers shown are residue numbers of clusters in the respective 
proteins. The sequence data for YCl, RC2, RC8 and RC9 are taken 
from Fujiwara et al. [32], Fujiwara et al. [27], Tanaka et al. [301 and 

phosphorylation sites. Kumatori et al. [31], respectively 

Not all the proteasome subunits bear an NLS se- 
quence: for example, the NLS sequence has not been 
found in subunit C5 (Fig. 1). Moreover, proteasomes 
in the nuclei are apparently similar in size to those in 
the cytosol [23]. These findings suggest that pro- 
teasomes traverse the nuclear membranes as intact 
complexes, not as free subunits. Proteasome complexes 
may be too large to be transported through nuclear 
pores, but the nuclear signal-mediated transport 
pathway is known to allow large nuclear proteins to 
enter the nucleus rapidly: for example, ribosomes, 
which are much larger particles, freely traverse the 
nuclear pores [26]. 

4. ACIDIC AMINO ACID CLUSTERS AND 
TYROSINE PHOSPHORYLATION SITE 

Recently, Yoneda et al. [33] suggested that the bin- 
ding pocket of the putative nuclear signal receptor in 
nuclear pores contains numerous acidic residues that 
interact in a complementary fashion with the basic 
residues of the NLS sequence. They raised an antibody 
against a synthetic peptide, D-D-D-E-D, which is com- 
plementary to the NLS sequence of the SV40 large-T 
signal peptide and found that on microinjection into 
cultured cells, this anti-peptide antibody bound to 
nuclear envelopes and blocked NLS-mediated uptake 
of proteins into the nucleus. 

On determination of the primary structures of pro- 
teasomes, we found that several proteasome subunits 
bear an acidic amino acid cluster that is enriched in 
glutamyl and aspartyl residues. These acidic amino acid 
clusters are idential, or very similar to the D-D-D-E-D 
sequence thought to be included in the putative nuclear 
receptor (Table III), suggesting that this cluster of 
negatively charged amino acids may interfere with the 
interaction between proteasomes with a positively 
charged NLS and nuclear receptor protein with a 
negatively charged cluster in nuclear pores. These 
negatively charged clusters were found in the carboxyl- 
terminal regions of RC2, RC8, RC9 and YCl (Fig. l), 
indicating the functional importance of their location, 
such as at the surface of molecules. Moreover, these 
segments in proteasomes appear to have been conserv- 

Table III 

Clusters of acidic amino acid residues in some proteasome subunits 
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ed during evolution of eukaryotes ranging from yeast 
to mammals. 

As shown in Fig. 2, computer-assisted homology 
analysis revealed that a sequence of about 50 amino 
acid residues in components RC3 and RC9 of rat pro- 
teasomes closely resembles a conserved region with a 
possible autophosphorylation site found in viral and 
receptor proteins with tyrosine kinase activity, such as 
pp40c“rc, a cellular protein with homology to the on- 
cogene product of Rous avian sarcoma virus, and 
receptors of epidermal growth factor and insulin [34]. 
A similar tyrosine phosphorylation site was also con- 
served in a corresponding region of subunit YC7-Q of 
yeast proteasomes (Fig. 2). Thus, this region may be 
generally important for expressing proteasome func- 
tions. In fact, several subunits of ~~0~0~~~~~ pro- 
teasomes were demonstrated to be phosphorylated in 
certain stages of development [35]. 

Interestingly, on determination of the primary struc- 
tures of proteasomes, we found that these potential 
tyrosine phosphorylation sites are located in the same 
polypeptide chain as the NLS sequence 128,321. As 
shown in Fig. 1, the two sites coexisted in subunits such 
as RC3, RC9 and YC7-c. Thus, tyrosine phosphoryla- 
tion of these proteasomal subunits may affect the NLS 
function, that is, the nuclear translocation of pro- 
teasomes. 

5. POSSIBLE REGULATORY MECHANISM FOR 
TRANSLOCATION OF PROTEASOMES FROM 
THE CYTOPLASM TO THE NUCLEUS 

As discussed above, proteasonles have an NLS seg- 
ment and may be translocated from the cytoplasm to 
the nucleus through a nuclear signal-mediated 

Fig. 2. Comparison of parts of the amino acid sequences of RC3, 
RC9, YC7-ry and autophosphorylation region5 of a family of proteins 
with tyrosine kinase activity. Residues that are identical in rat 

proteasome RC3 and RC9, yeast proreasome YC7-a and other gene 
products are boxed. The numbers shown are the residue numbers of 
the respective proteins. Gaps (bars) are inserted for optimal 
alignment of the sequences. The asterisk indicates the 
autophosphorylation tyrosine residue conserved in this family of 
tyrosine kinases. The sequence data for Src (pp60”“), a cellular 
protein with homology to the oncogene product from Rous avian 
sarcoma virus, human epidermal growth factor receptor (EGFR) and 

human insulin receptor (INSR) are from Hanks et al. [34]. 
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pathway. However, nuclear translocation of pro- 
teasomes appears to be somewhat different from that 
of typical nuclear proteins, because proteasomes are 
present in both the cytosol and the nucleus, whereas 
most known nuclear proteins are present only in the 
nucleus. Therefore, there must be some mechanism 
that regulates nuclear translocation of proteasomes. 

The glucocorticoid receptor is normally present in 
the cytosol, but is transported into the nucleus when it 
is associated with glucocorticoid [26]. Probably the 
NLS of a glucocorticoid receptor in the cytosol is mask- 
ed by its association with HSP90 protein, but once 
glucocorticoid binds to its receptor, the ligand-receptor 
complex releases HSP protein and undergoes a confor- 
mational change that results in its transfer into the 
nucleus. The actin molecule itself does not bear a NLS 
sequence, but actin is known to be transported into the 
nucleus in response to heat-shock stress. This is due to 
its association with cofilin containing a NLS segment 

[371. 
Based on these findings, we propose the possible 

mechanism for regulation of nuclear translocation of 
proteasomes shown schematically in Fig. 3. The cluster 
of acidic amino acid residues in proteasomes is assumed 
to antagonize the nuclear transport mediated by the 
NLS segments. We assumed that there are two types of 
proteasomes with different conformations: One type is 
a cytoplasmic form in which the NLS is buried in the 
interior of the molecule or masked by the acidic cluster, 
resulting in suppression of binding of proteasomes to 
the nuclear receptor in nuclear pores. The other type is 
the form imported into nuclei in which the positive 
NLS domain is exposed on the surface of the molecule 
or released from interaction with the acidic cluster, 
with consequent acquisition of an active signal for 
nuclear translocation. This type of proteasomes readily 
associates with the putative receptor of nuclear proteins 
by complementary charge interaction, which is the in- 
itial event in translocation of proteins into the nucleus 
and their rapid traverse of the nuclear membrane. 

Nucleus 
c/ 

Fig. 3. Schematic representation of a possible mechanism for nuclear 
translocation of proteasomes. For details, see text. +Pi, 
phosphorylation; -Pi, d~pho5phor~llation, + and -, amino acid 

residues with positive and negative charges, respectivefy. 
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Thus, the distribution of nuclear and cytoplasmic pro- 
teasomes may be determined by the balance of these 
two forms of proteasomes. 
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