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Single CaZ+-dependent K+ currents responding to external ATP were recorded from cell-attached patches on mouse peritoneal macrophages. Extra- 
cellularly applied ATP activated an inward single-channel current with a conductance of 25 pS and a reversal potential of - 79 mV (pipette potential, 
Vr) when the pipette contained a 145 mM KC1 solution. The reversal potential was shifted 56 mV positive by a IO-fold reduction in external (pipette) 
K+ concentration. The effect of ATP was abolished by either removal of external Ca2+ or treatment with an intracellular Ca2+ chelator, the acet- 
oxymethyl ester of 1,2-bi.s (2-aminophenoxy)ethane-N,N,W,N-tetraacetic acid (BAPTA-AM). This channel has a mean open time of 9.1 ms and 

open probability was not strongly dependent on V, in the range tested (+ 120 to - 30 mV). 

External ATP; Ca2+-dependent K+ conductance; Single channel; Patch-clamp; Mouse peritoneal macrophage 

1. INTRODUCTION 

Several recent studies in macrophages have shown 
that external ATP induces an increase in [Ca2+]i [ 1,2], 
depolarization of plasma membrane via the activation 
of ion nonselective conductance [ 1,3], and inhibition of 
Fc receptor-mediated phagocytosis [l]. Since ATP is 
released from platelets [4], endothelial cells [5] and 
neurons [6] under certain situations, ATP may serve as 
an intercellular messenger in regulating physiological 
function of macrophages. 

whose opening is not strongly dependent on the mem- 
brane potential. It appears that this conductance may 
be important in regulating macrophage functions such 
as phagocytosis and adhesion. 

2. MATERIALS AND METHODS 

Recently, we have demonstrated, using the per- 
forated patch-clamp recording in mouse macrophages, 
that ATP activates a Ca’+-dependent K+ channel via an 
influx of Ca2+ across the plasma membrane, resulting 
in membrane hyperpolarization [7]. The activation of 
this channel by ATP was completely blocked by 
quinidine, a known K+ channel blocker [7]. On the 
other hand, quinine has been reported to inhibit 
phagocytosis by mouse macrophages (81, suggesting an 
important role of K+ channel in macrophage function. 
There are at least three types of Ca’+-dependent K+ 
channels in a variety of tissues (large, intermediate, or 
small conductance) [9]. These observations prompted 
us to evaluate which type of Ca’+-dependent K+ chan- 
nel is activated by ATP in macrophages for under- 
standing the mechanism underlying phagocytosis. 
Using single-channel recording technique, we clearly 
demonstrate that ATP activates a Ca2+-dependent K+ 
channel which has the intermediate conductance and 

Mouse peritoneal macrophages were collected and cultured as 
described previously [7]. Coverslips with adherent cells were mounted 
in a recording chamber (0.3 ml) and perfused at a rate of 1 ml/min 
with standard bath solution containing (in mM): 145 NaCl, 4.5 KCl, 
1.6 CaCl2, 1.13 MgCla, 10 Hepes, pH 7.2. Single-channel currents 
were recorded by the cell-attached patch-clamp method using a List 
EPC-7 patch-clamp amplifier [lo]. Unless otherwise stated, patch 
pipettes (2-5 MI?) were filled with the 145 mM KC1 solution contain- 
ing (in mM): 145 KCl, 1 MgCla, 0.1 CaC12, 1.1 EGTA, 10 Hepes, pH 
7.2. In some experiments, K’ concentration in the pipette was varied 
by replacing KC1 with an equimolar concentration of NaCl. Single- 
channel data were stored on an FM tape recorder for later analysis. 
Currents were later filtered at 1 kHz (- 3 dB, 24 dB/octover), 
digitized at 2 kHz using Canopus 1Zbit A/D converter and analyzed 
with a NEC PC-9801 personal computer. The mean open probability, 
P,, was calculated from the area under peaks of the amplitude 
histogram after fitting each peak with a Gaussian curve. The mean 
open time was calculated from the open time histogram by a single 
exponential fitting. ATP was extracellularly applied by means of a 
pressure ejection system (PPM-2 Medical System) [7]. ATP (sodium 
salt) was purchased from Boehringer and BAPTA-AM from Dojin. 

3. RESULTS AND DISCUSSION 

Correspondence address: M. Sawada, Department of Physiology, 
Shimane Medical University, Izumo 693, Japan 

After a delay of l-2 s, application of ATP (100 PM) 
elicited discrete channel activity with simultaneous 
opening of up to five channels on the patch held at a 
potential (V,) of + 60 mV (Fig. 1A). Positive V, cor- 
responds to hyperpolarization from the resting poten- 
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Fig. 1. (A) ATP activation of a single-channel current in cell-attached 
patch. The patch is held at +60 mV. ATP (100 ,uM) was applied at 
times indicated in the lower traces in this and subsequent figures. (B) 
Expanded current traces of record in (A) indicated as a-e. Inward 
current activity is shown by deflections below the baseline as 
indicated by C (closed state) and open channel levels are indicated to 

the right of traces by numbers in this and subsequent figures. 
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tial. Since ATP cannot diffuse from the bathing 
medium into the area of the patched membrane, activa- 
tion of these channels should be indirect, presumably 
via a diffusible second messenger(s). 

To determine the channel conductance and ion 
specificity, the patch was held at a various V, during 
the ATP-induced responses (corresponding to part c in 
Fig. 1A) (Fig. 2A). Current-voltage relations revealed 
that the channel shows slightly inward rectification 
with a conductance of 25 pS and a reversal potential of 
-79 mV (145 mM KCl, in the pipette) (Fig. 2C). Since 
intracellular K+ concentration is approximately 160 
mM [l], the predicted reversal potential for a K+ cur- 
rent across the patch membrane is about -2 mV. The 
reversal of current at -79 mV implies the membrane 
potential to be -77 mV. This is consistent with our 
previous observation that external ATP hyperpolarized 
macrophages to -80 mV [7]. With use of low K+ 
(36 mM KCl) in the pipette, the channel has a slope 
conductance of 15 pS and a reversal potential of 
-45 mV (Fig. 2B, C). The shift in the reversal poten- 
tial was 34 mV, close to the calculated value of 35 mV 
for K+. Therefore, K+ is the main ionic species carrying 
the ATP-induced current. 

As shown in Fig. 3A and B, either the removal of ex- 
ternal Ca2+ (0.1 x normal Ca2+) or the bath application 
of BAPTA-AM (50,~M), a membranepermeable and 
highly specific chelator for Ca2+ [ Ill, almost complete- 
ly abolished the ATP-induced channel activity. Thus, 
the action of ATP is probably mediated by an increase 
in [Ca2+]i resulting from Ca2+ influx across the plasma 
membrane. 

C 
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Fig. 2. Conductance and ion selectivity of the ATP-induced single-channel currents. (A, B) Expanded current records corresponded to part c of 
Fig. 1A with the symmetrical 145 mM KC1 (A) or 36 mM KC1 (B) pipette solution at different V, (indicated to the left). (C) I-V relations from 
(A) (open circles) and (B) (open squares). Data points are mean it SD. Number of patches used to determine each point is shown in parentheses. 
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Fig. 3. Effects of removal of external Ca’+ (A) and 50 ,uM BAPTA-AM (B) on the ATP-induced response. (A) a, control; b, 6 min after exposure 
to low Ca’+ (0.1 x normal Ca*+); c, 4 min after washout. (B) a, control; b and c, 2 min and 4 min after exposure of 50 NM BAPTA-AM. V, 

was held at +60 mV. Inserts below traces present segments of data on a faster time scale. 

In Fig. 4A, the observed values for the probability to 
find 0, 1, 2,. . . N channels in the open state were com- 
pared with the predicted value calculated from the 
binomial distribution. A good agreement between 
observed and predicted values was found. Thus, the 
ATP-induced channels have similar properties and act 
independently of one another. The open time histo- 
gram of the channel could be fitted by a single exponen- 
tial curve with a time constant of about 10 ms in the 
patch where only one channel was recorded. The 
averaged mean open time at V, of +60 mV was 9.1 f 
2.0 ms (mean f SD, n = 5) and did not show a clear 
voltage-dependency (data not shown). PO also showed 
little dependence on membrane potential over the 
voltage range tested (Fig. 4C). 

The Cazf-dependent K+ conductance described here 
closely resembles the channel activated by ionomycin in 
human macrophages (36 pS in symmetrical KCl) [12] 
and the channel activated by ionomycin or mitogenic 
lectin in rat thymocytes (25 pS in symmetrical KCl) 
[ 13,141 in their conductances and I-V relations. 

The binding of IgG-coated erythrocytes to mouse 
macrophage Fc receptor results in a transient increase 
in [Ca’+]i and triggers phagocytosis [S]. Such an in- 

Fig. 4. Kinetic analysis of the ATP-induced single-channel current. 
(A) a, amplitude histogram of single channel events; b, percentage of 
time during which zero, one, two or three channels (r) were 
simultaneously open during the ATP-induced response. Observed 
values and predicted values calculated from the binomial distribution 
are represented by open columns and arrows, respectively. V, was 
held at +60 mV. (B) Open time histogram at VP of +60 mV. Insert 
shows original current record on an expanded time scale. (C) Voltage- 
dependency of mean open probability (PO). Open triangles, open 

squares and open circles represent three different patches. 
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crease in [Ca”]i in turn activates a Ca2+-dependent K+ 
conductance, resulting in membrane hyperpolarization 
[ 151. Quinine, a known K+ channel blocker, inhibits 
phagocytosis in these cells [8]. Moreover, in B and T 
lymphocytes, mitogenic lectin and antibodies activate 
Ca2+-dependent K+ conductances during their activa- 
tions [ 16,171. Therefore, we speculate that the complex 
cellular function of phagocytosis and adhesion in 
macrophages may be initiated via the activity of a 
Ca’+-dependent K+ conductance as well as a Ca2+ con- 
ductance. However, further investigation will be 
necessary to determine the precise physiological func- 
tion of these events in the activation of immune cells. 
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