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A prominent common feature of calmodulin and troponin structures is the unusually long central helix which separates the two lobes, each contain- 
ing two Ca 2 +-binding sites. To study the role of certain highly conserved residues in the helix in the contraction-relaxation switching mechanism 
in muscle, we measured the CaZ+-activated force of permeabilized skeletal and smooth muscles with three genetically manipulated forms of calmo- 
dulin. Mutated calmodulin was made to substitute for troponin-C in vertebrate skeletal fiber. The mutants had 1-4 deletions in the conserved 
cluster (positions 81 84) in the solvent-exposed region of the central helix, which also substantially shortened the helix. The force of the maximally 
activated fiber was found to be diminished only with the mutant in which the entire cluster Ser-81 to Glu-84 (CaMzl81 84) was deleted. All such 
deletions were found to be completely ineffective in blocking the Ca2+-switching process in smooth muscle strips. The results show for the first 
time that at least a part of the highly conserved four-residue cluster in the central helix is critical for the contraction mechanism of striated muscle. 
Further, the possibility is raised that the reduced length of the central helix may be a determining factor in the CaZ+-switching mechanism in fast- 
twitch muscle. These findings combined with the results on smooth muscle indicate diversity in the structure-function specifications for the central 

helix of calmodulin for different target proteins. 

Calcium; Troponin C; Parvalbumin; Oncomodulin 

1. INTRODUCTION 

TnC and CaM are highly homologous proteins (ap- 
prox. 75°7o sequence similarity) and represent a broad 
class of calcium-modulated proteins with repeated 
helix-loop-helix motifs for Ca z+ binding, first describ- 
ed in parvalbumin [1-4]. TnC is a function-specific 
protein operating the contraction-relaxation switch in 
vertebrate striated muscles. CaM can be substituted for 
TnC under experimental conditions [5,6]. Also, CaM 
operates the contraction switch in smooth muscle. A 
great deal is now known about the tertiary structures of 
CaM and TnC from their sequences and high resolution 
X-ray studies [7-9]. However, the molecular 
mechanisms of the CaZ+-switch with either of these 
calcium-modulated proteins are still not well 
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understood. The recent availability of genetically 
altered forms of CaM and TnC [10-15], and the ability 
to substitute them for their native analogs in 
permeabilized preparations of  muscle fibers [15-18], 
offer remarkable possibilities to advance the understan- 
ding of  the switching mechanisms in structurally com- 
petent milieus [4]. The present study utilizes this 
strategy with CaM mutants and uses both striated and 
smooth muscles. 

Both CaM and TnC are dumbbell-shaped, and two 
CaZ+-binding motifs are present in each of  the lobes. A 
prominent feature is the unusually long central helix 
(approx. 40 ,& in CaM, 44.5 A. in TnC) that separates 
the lobes [7-9]. The solvent-exposed region of  the cen- 
tral helix in these proteins contains a highly conserved 
domain of  four residues (Ser-Glu-Glu-Glu). Our aim 
was to investigate the role of this domain in the 
contraction-relaxation switching mechanism. 

Three genetically manipulated forms of calmodulin 
were used. These had deletions of  Glu-84 (CaMA84), 
Glu-83 and Glu-84 (CaMA83-84), or Ser-81 through 
Glu-84 (CaMA81-84) [12]. This particular amino acid 
cluster has been the subject of  several recent studies on 
calmodulin, but the previous investigations were 
limited to in vitro studies of isolated proteins. Present- 
ly, by substituting the CaM mutants for TnC in fast- 
twitch fibers, we show that the deletion of  this four- 
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r e s idue  c lus te r ,  w i th  the  a s s o c i a t e d  dec rease  in cen t r a l  
he l ix  l eng th ,  is c r i t ica l  in t he  t r igge r  m e c h a n i s m  o f  mus -  

cle c o n t r a c t i o n .  In  c o n t r a s t ,  t he  resul t s  w i th  s m o o t h  

m u s c l e  s tr ips  i nd i ca t e  t h a t  its c o n t r a c t i o n - r e l a x a t i o n  
swi tch ,  o p e r a t e d  by  the  m y o s i n  l igh t  cha in  k inase  

( M L C K )  ac t iv i ty  u n d e r  t he  c o n t r o l  o f  c a l m o d u l i n ,  acts 

i n d e p e n d e n t l y  o f  this  c lus te r ,  as in the  in v i t r o  resul ts .  
T h e  poss ib i l i t y  is a l so  ra i sed  t h a t  the  r e d u c e d  l eng th  o f  

t he  cen t r a l  shaf t  m a y  be  a c r i t ica l  f a c t o r  fo r  t he  swi tch  

in ske le t a l  musc le .  

2. M A T E R I A L S  A N D  M E T H O D S  

2.1. Tissue and fiber preparation 
For striated muscle fibers, small bundles (1-2 mm by 4-10 mm) of 

psoas muscle of adult rabbit were tied to sticks and stored overnight 
at -20°C for chemical skinning in solution containing (in raM): 150 
potassium propionate, 5 Mg-acetate, 5 EGTA, 5 ATP, 1 
dithiothreitol, 50% v/v glycerol, and pH 7.00. Single fibers were 
selected on the basis of sarcomere uniformity and pSr activation, as 
described previously [6]. The fiber was attached to the force 
transducer, and transferred to the relaxing solution (typically (in 
raM): 100 potassium propionate, 20 imidazole, 6.06 MgCI2, 5 ATP, 
5 EGTA, 20 phosphocreatine, pH 7.00 and ionic strength 190-200; 
1 free Mg2+). In each case, the fiber was briefly treated with 0.5% 
Triton-X detergent (2 min treatment at 10°C). Activating solutions 
were made by appropriately varying the CaZ+-EGTA to EGTA ratio. 
Experiments were carried out at the sarcomere length of 2.5 ,um as 
monitored by laser diffraction. Activations of these fibers were made 
at 5°C. 

For smooth muscle, thin strips (100 ,urn by 2-3 mm) of Taenia coli 
were used from the guinea pig. The tissue was cleaned of adventitia 
while bathing it in normal Krebs' solution at room temperature, with 
vigorous bubbling using a mixture of 5% CO2 and 95% 02 [19]. The 
cleaned samples were transferred to the skinning solution as describ- 
ed above for psoas muscle and the experimental strips were isolated 
as needed. 

2.2. TnC extraction from striated muscle fiber segment 
To extract TnC from the experimental fiber, the fiber was attached 

to the force transducer at one end and a servo motor at the other, 
equilibrated in a CaZ+-free rigor solution (in raM: 165 potassium pro- 
pionate, 20 imidazole, 2.5 EGTA, 2.5 EDTA, pH 7.0) at 4°C, and 
transferred to the extracting solution (in mM: 5 EDTA, 10 imidazole, 
pH 7.2) at 30°C for 5-30 min duration as described previously [6]. 
The force with maximal activation (pCa4) was checked periodically, 
and extraction was ended when the force had fallen below 20% Po. 
The SDS-PAGE gel runs on such fibers indicated a 70-75% TnC ex- 
traction. Further removal of TnC was accompanied with the loss of 
another as yet unidentified cofactor [20], and the TnC extraction was 
therefore limited to the level indicated. 

To reconstitute the fiber, TnC was recombined with denuded sites 
with a 10-30 min incubation at 5°C (0.2-1 mg/ml protein in the 
relaxing solution). Afterwards the free protein was washed out from 
the fiber with several rinses, unless otherwise indicated. The inser- 
tions of tissue CaM and the recombinants were made by loading the 
fibers with these proteins (200 izg/ml) in the activating solution. Rins- 
ing with protein-free activating solution was necessary to estimate the 
bound CaM [6]. All fibers were thus rinsed and stored at -70°C for 
quantitative analysis by gel electrophoresis. These fibers were 
ultrasonicated in the sample buffer containing 1 mM EGTA. The gels 
were silver stained to reveal the TnC and CaM bands in these single 
fiber segments. The detailed protocol for electrophoresis and the 
staining procedures were similar to those described previously [6,21[. 
The intensity of the various protein bands were quantified with a 
laser densitometer of 100-/~m beam width. 

2.3. Smooth muscle activation 
There is no established TnC function in smooth muscle, and the 

contraction of skinned strips requires the presence of exogenous CaM 
in the activating solution. Accordingly, these solutions were made 
with a saturating concentration of approximately 1 ,aM (18,ug/ml) 
CaM or the same amount of a mutant, unless otherwise indicated. 
The activations were made at 20°C. 

The statistics of the data are given as _+ SEM wherever ap- 
propriate. 

2.4. Genetic manipulation of CaM 
The cloning strategy and design of recombinants with primer ex- 

tension mutagenesis of the cDNA encoding control CaM, have been 
described by Persechini and co-workers [12]. The three bacterially 
synthesized mutants described previously [12], in which Glu-84 
(CaMA84), Glu-83-84 (CaMA83-84), or Set-81 through Glu-84 
(CaMA81-84) have been deleted, were used. 

3. R E S U L T S  

3.1. Fast- twi tch f ibers  

T h e  C a Z + - d e p e n d e n t  mob i l i t i e s  o f  the  bac t e r i a l l y  ex-  
p r e s sed  p ro t e in s  o n  gels were  s imi la r  fo r  all t h ree  

m u t a n t s  a n d  fo r  the  t i ssue C a M  (Fig.  1A).  Fig .  1B and  

C s h o w  the  t races  o f  o r i g ina l  f o r ce  r eco rds  o f  
p e r m e a b i l i z e d  f a s t - tw i t ch  f ibers  s u b j e c t e d  to  T n C  ex- 

t r a c t i o n  a n d  r e c o n s t i t u t i o n  p r o t o c o l s .  T h e  c a l c i u m -  

a c t i v a t e d  fo r ce  a f t e r  r e in se r t i ng  T n C  in the  f ibe r  was 

8 0 - 1 0 0 %  o f  t he  fo r ce  p r io r  to  e x t r a c t i o n  (Fig.  1B). 
W i t h  b r a in  C a M  s u b s t i t u t e d  f o r  T n C ,  the  fo r ce  

r e c o v e r y  was  in the  6 0 - 8 0 %  r a n g e  a m o n g  16 f ibers  
s tud ied .  T h e  k ine t ics  o f  t he  fo r ce  rise is seen to  be  
s l o w e r  wi th  C a M  t h a n  wi th  T n C  ( c o m p a r e  t he  u p p e r  

t r a ce  in Fig .  1C wi th  na t ive ) ,  b u t  this is e x p l a i n e d  by  

the  s low u p t a k e  o f  t he  C a - C a M  c o m p l e x  by  the  T n C -  
d e n u d e d  sites. T h u s ,  as s h o w n  in the  l o w e r  t r ace  in 

F ig .  1 C,  fo rce  rise was n e a r l y  i n s t a n t a n e o u s  w h e n  C a M  

was  p r e l o a d e d  in a r igo r  s o l u t i o n  c o n t a i n i n g  p C a 4 .  

A l s o ,  t he  p l a t e a u  r e a c h e d  in t he  s t eady- s t a t e  was s imi la r  
in b o t h  cases.  

C a M  u p t a k e  by  the  T n C - e x t r a c t e d  f ibers  was  a lso  
c h e c k e d  wi th  s i lver  s t a in ing ,  as wel l  as w i th  r ad io l abe l l -  
ed  [125I]CaM [6], a n d  was  f o u n d  to  be  c o m p a r a b l e  to  
t h e  a m o u n t  o f  de le t ed  T n C .  

T h e  resul ts  o f  f o r ce  a n d  o f  u p t a k e  fo r  t he  r e c o m b i -  

n a n t  m u t a n t s  in the  f a s t - tw i t ch  f ibe r  a re  s u m m a r i z e d  in 
F ig .  2A.  T h e  fo r ce  was  u n c h a n g e d  wi th  b o t h  C a M A 8 4  
a n d  C a M A 8 3 - 8 4  in c o m p a r i s o n  wi th  the  r e c o m b i n a n t  
c o n t r o l ,  b u t  was s h a r p l y  i nh ib i t ed  wi th  the  a d d i t i o n a l  
t w o  de le t ions  in C a M A 8 1 - 8 4 .  C a M  u p t a k e  by  the  f ibe r  

as d e t e r m i n e d  by  s i lver  s t a in ing  was  f o u n d  to  be the  

s a m e  fo r  this  4 - r e s idue  m u t a n t  as fo r  n o n - m u t a t e d  

C a M  (Fig,  2A) .  T h e  resul t s  d e m o n s t r a t e  a cr i t ica l  ro le  
f o r  t h e  m u t a g e n i z e d  r e g i o n  8 1 - 8 4  ( S e r - G l u - G l u - G l u )  in 
t he  r e g u l a t i o n  o f  f o r ce  d e v e l o p m e n t  in the  f ibe r  w h e n  
C a M  was  subs t i t u t ed  fo r  T n C .  

3.2.  Permeabi l i zed  s m o o t h  muscle  

Fig .  2B shows  the  resul ts  o f  fo rce  on  the  sk inned  
g u i n e a  p ig  Taenia coli st r ips .  It  is k n o w n  tha t  t he  c o n -  
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A. Mobility of CaM mutants 

Con ~ 8 4  / ' , 83 -84  A81 -84  

B. Recovery of force with TnC 
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C. Recovery of force with CaM 
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Fig. 1. (A) Electrophoretic mobility of  CaM. Purified proteins were 
resolved by 15% SDS-PAGE. Proteins were solubilized in SDS 
sample buffer  containing either 2 mM  E GT A ( - C a l c i u m )  or 2 mM 
CaC12 (+  Calcium). No EGTA or CaC12 was added to the running 
buffer  or the gel polymerizing solution. 40 ng protein was loaded 
onto each lane. (B) Force response with TnC extraction and 
reinsertion. A permeabilized fiber was maximally activated with 
1 0 - 4 M  C a  2+ (pCa4). The force scale (vertical bar) indicates 
50 k N / m  2, and time (horizontal bar) indicates 20 s. (C) Insertion of 
CaM. CaM was loaded in the presence of maximal  calcium as 
described before [6,21]. The time scale for the third trace is indicated 
as 100 s. The interruptions in the force trace indicate release-stretch 
length steps applied to the fiber during prolonged activation for CaM 
uptake.  The fiber sarcomere length was monitored with laser 
diffraction or with a compound microscope. The lower force trace 
shows the response when both calcium and CaM were included in the 
loading phase, prior to activation in the presence of ATP.  The gels 
were 12% polyacrylamide. Compare  the uptake of CaM by the fiber 
(lane 2) in relation to TnC in native fiber (lane 1). The third and 
fourth lanes show purified proteins. The measured intensities of  the 
TnC and CaM bands were normalized to the LC1 band in the same 
lane to compare the results. The TnC/LC1  fraction was 0.26 in the 
native, and 0.06 in the ( + ) C a M  lane. CaM/LC1 was 0.19 in lane 2. 

Similar results were seen in 7 other experiments. 

traction switch in smooth muscle involves the activa- 
tion of MLCK by CaM [22,23], which in turn 
phosphorylates the light charts to turn on the cross 
bridges. Since MLCK is also the more common in vitro 
enzyme assay for the mutant activity, we thought it 
worthwhile to repeat the tests on mutants in smooth 
muscle strips to make a direct comparison of the fiber 
studies with these assays. The experiments with these 
strips also would serve as controls for the mutant 
results on skeletal fibers. As seen in Fig. 2B, the wild 
type CaM (1 #M) and the mutants were all equally ef- 

A, Skeletal muscle 

O 0  

c) 0.5 

2_ 0 ~ 
Con ,-'&84 A83-84  A81-84  

Tnl/  -TRC 
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CO 
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co 
<3 

B. S m o o t h  m u s c l e  

o 

i°5 / 
z 0 L 

wild mutant TT ITr 
type I 

Fig. 2. (A) Force response of the fiber with recombinant CaM. Force 
(shaded bars) was normalized to the value for the recombinant 
without deletions. The fractions of  residual TnC (black bars) and the 
uptake of the bacterially synthesized CaM (hatched bars) were 
determined for CaMA81-84.  These are shown after normalizing the 
amounts  determined by the densitometer to the original TnC in the 
native fiber segment [21]. The data shown are on 16 fibers. 
Activations were made at 5°C, and the force was normalized to that 
with the wild type CaM. The lower panel shows the uptake of 
recombinant  CaM and of  the mutan t  CaMA 81-84. The gel was 15 %, 
and the sample buffer  contained 1 mM CaCI2. The control lane was 
with the wild type recombinant.  (B) Force response of the skinned 
smooth  muscle strips with recombinant  CaM (1 #M). The wild type 
was bacterially expressed normal  CaM, and 1 to 11I refer to the 
mutants  CaMA84, CaMA83-84  and CaMA81-84,  respectively. Data 
are on 5 fibers, activation temperature was 20°C, and the 
normalization was made to the measurements  with brain CaM 

obtained commercially. 
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fective for force development in the smooth muscle. 
There was no significant force without exogenous CaM 
in the activating solution. Also, TnC gave 22% force 
recovery (_+ 10%), on 3 preparations,  when tested with 
a 3-fold higher concentration than CaM, indicating 
that TnC was relatively ineffective in smooth muscle. 

4. DISCUSSION 

The present study comparing the functional altera- 
tions of  CaM mutants in skeletal and smooth muscles 
indicates diversity in the mechanisms of  CaM interac- 
tion with target proteins. Additionally, since CaM and 
TnC are so similar in structure, and because CaM 
substitutes for TnC for the regulation of force in the 
skeletal fiber [6], the present study has implications for 
the mechanism underlying the contraction-relaxation 
switch in striated muscle. Thus, the observation that 
the activation by Ca 2+ is inhibited sharply with the 
shortest mutant  CaMA81-84 in this study, but not at 
all with the other mutants,  suggests that at least part  of  
the sequence of a highly conserved region in the central 
helix of  the trigger molecule may be critical for force 
regulation in the fiber. 

Furthermore,  deletion of  a single residue alters the 
relative orientation between N- and C-terminal lobes by 
100 °, in addition to shortening the distance by 1.5 A. 
Thus the fact that the first two deletions (CaMA83-84) 
were without effect suggests that the angular orienta- 
tion by itself is not a major  factor in the ' on-of f '  
switching mechanism in muscle. The idea that the cen- 
tral helix may compensate for these angular modifica- 
tions by being able to act as a flexible tether is con- 
sistent with our results. The additional possibility that 
angular orientations between the lobes may selectively 
alter the Ca 2+ affinity under partial activations should 
also be considered. Furthermore,  on the basis of  our 
results with CaMA81-84,  the idea also arises that the 
global structure of  the central helix defined critically by 
a minimum length (approx. 34 A) is important  for 
maximal  force regulation in striated muscle. The 
findings on smooth muscle suggest that the minimum 
length is different for the Ca2÷-switch operated via 
MLCK.  

4.1. Diverse structure-function specifications o f  CaM 
Trifluoperazine-induced inhibition of  CaM has been 

shown to be similar in the contractions of  skeletal and 
smooth  muscles [24]. Trifluoperazine inactivates CaM 
by binding to the hydrophobic sites in the central helix, 
and the above results [24] indicate that this 
hydrophobic domain performs a similar role in the 
switching mechanisms with Tnl  and MLCK. On the 
other hand, the effects of  deletion mutants are different 
in the contraction-relaxation switches in skeletal and 
smooth  muscles. Thus, contrasting with the results of  
mutants  on skeletal fibers which showed diminished ac- 

tivity of  CaMA81-84,  in smooth muscle all mutants 
were as effective as the wild type CaM. This diversity 
between smooth and striated muscles provides the first 
evidence in structurally competent cells that the 
structure-function specifications of  the central helix of  
CaM vary for different target proteins. 

Diversity of  factors in the functions of  CaM is also 
seen in other studies. Craig et al. [10] found decreased 
activation of myosin light chain kinase in solution when 
the negative charge of  the glutamate cluster (positions 
82-84) was reversed with positively charged lysines 
without altering the length, indicating that the elec- 
trostatic properties of  the cluster may be important  for 
specific functions. The reduced net charge of the cen- 
tral helix in the deletion mutants thus might be a factor 
in our results too, but this could not be the complete ex- 
planation, as the mutants remained active in smooth 
muscle. 

The length of  the central helix appears to be a 
separate additional factor. This was also suggested in 
an earlier study of  MLCK function in vitro, with a set 
o f  mutants  where 4 additional amino acids were in- 
serted to elongate the central shaft of  CaM [11]. In light 
of  the skinned fiber results, the length requirement ap- 
pears to be different for the contraction-relaxation 
switches of  skeletal and smooth muscles. The CaM-TnI  
switch in striated muscle was inoperable when the cen- 
tral shaft was close to 34 A. Fiber studies with similar 
TnC mutants are needed in the future to find the 
precise critical length for the TnC-TnI  switch. In- 
terestingly, an upper limit (approx. 44 A) is also sug- 
gested for the CaM-MLCK switch from the in vitro 
results. Such an effect of  length would be consistent 
with the present smooth muscle results, and would also 
explain the observed ineffectiveness of  exogenous TnC 
in smooth muscle. 

The dumbbell shape itself is also critical for force 
regulation in the fiber. This was suggested on the basis 
of  results with parvalbumin and oncomodulin [25]. 
Parvalbumin lacks nearly half of  the amino acid struc- 
ture corresponding to the N-terminus lobe. This is 
associated with a collapsed central helix that folds the 
protein into an ellipsoidal configuration [1]. Par- 
valbumin neither binds to TnC-denuded sites in the 
fiber nor is active in Ca z+ regulation [25]. On- 
comodulin is an analog of  parvalbumin,  but is ap- 
parently enzymatically active in solution in vitro 
[26,27]. In the fiber, oncomodulin was inactive like 
parvalbumin ([25] on fast-twitch fiber; unpublished 
results of  J. Gulati and A. Babu on smooth muscle), 
suggesting that the molecule in the shape of  an ellipsoid 
would be unable to enter the at tachment sites in vivo. 
This would indicate also that the diminished activity of  
the CaM mutant  CaMA81-84 in the present study is 
unlikely to be due to global folding of the molecule, 
because interaction of  the mutant  with the target 
switching-complex in the fiber was normal.  
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There  is ano the r  interes t ing f inding in the in vi t ro 
sys tem which is surpr is ing  and  present ly  di f f icul t  to 
reconci le  with the f iber  results.  This  concerns  the A T -  
Pase  act ivi ty  o f  the recons t i tu ted  ac tomyos in  using a 
de le t ion  m u t a n t  o f  TnC lacking residues Lys -Gly-Lys  in 
pos i t ions  9 1 - 9 3  [13]. In  TnC,  these residues im- 
med ia t e ly  fo l low the Se r -Glu -Glu -Glu  cluster  dele ted in 
the  C a M  mutan t s  used in the present  s tudy.  The  AT-  
Pase  act ivi ty  could  no t  be tu rned  o f f  with the  mu ta t e d  
TnC.  This  result  is unl ikely  to be a direct  length effect  
because  wild type  C a M  is the same length (40 ,~,) as the 
T n C  mutan t ,  lacking a m i n o  acids 91 -93 ,  and  is still 
ab le  to regula te  the  con t rac t ion  o f  skinned f ibers.  

4.2. Conclusions 
The  mechan i sms  o f  the  in terac t ions  be tween the four  

Ca2+-binding  sites in bo th  C a M  and TnC are o f  great  
in teres t  for  the unde r s t and ing  o f  the Ca 2÷ switch in 
muscle  con t rac t ion  and  o ther  cel lular  processes.  
A l t h o u g h  specific ( regu la tory  and  s t ructura l )  funct ions  
have  been previous ly  assigned to the  sites in the N- and 
C- t e rmina l  lobes o f  TnC,  the s t ructure  o f  the  centra l  
shaf t  connect ing  the two lobes is also found  to be im- 
p o r t a n t  for  func t ion  in muscle.  Fu r the r ,  the c o m b i n e d  
app roaches  o f  molecu la r  genetics and  pe rmeab i l i zed  
f ibers  are shown to be increas ingly  va luable  for  fu ture  
s tudies .  The present  results  for  the first  t ime raise the 
l ike l ihood  tha t  a highly shor tened  central  helix may  be 
cri t ical  for  the con t r ac t ion - re l axa t ion  switch in s t r ia ted  
muscle.  F o r  TnC,  this suggests the poss ib i l i ty  o f  in- 
t e r ac t ion  be tween Ca2÷-specif ic  Ca2÷-Mg 2÷ sites 
t h r o u g h  the central  helix. The dis tance  o f  sepa ra t ion  
be tween  the lobes could  regulate  the C a M  in te rac t ion  
with myos in  l ight chain  kinase in smoo th  muscle  as 
well.  I f  so, the f indings  would  suggest tha t  the cri t ical  
m i n i m u m  length is d i f fe ren t  for  the in terac t ions  o f  the 
m o d u l a t o r s  with Tn l  than  tha t  with M L C K .  
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