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c¢DNA clones coding for the B-chain of murine Clq were isolated from a mouse macrophage library. The characterized clones include the total

coding region plus a leader sequence. High homology was found with human Clg B-chain in the coding region (81%). Northern blot analysis of

total RNA from different tissues of Balb/c mice showed one band of approximately 1.2 kb. The highest signal was found in RNA preparations

of thioglycolate-activated peritoneal macrophages. The probe also hybridized with mRNA from spleen, thymus and heart. Extremely weak signals
were found in liver, kidney, lung and intestine tissues.
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1. INTRODUCTION

Clq is a subcomponent of the first component of
complement, that initiates the classical pathway by bin-
ding to the Fc-portion of immunoglobulins or to polya-
nions [1]. Murine Clq has been purified and
characterized from serum, plasma and ascites fluid.
The biochemical, physical and biological properties
show high similarities to human Clq [2-5].

The site of biosynthesis of C1 and Clq in particular
has been the topic of some controversy. In early biosyn-
thetic labelling experiments and functional tests, Cl
and Clq synthesis was demonstrated in epithelial cells
of the small intestine of guinea pigs [6] and intestinal
tissue of the piglet [7]. Since Clq is a collagen-like
molecule, the synthesis by collagen-producing cells was
investigated. The synthesis of Clq and Cl by human
fibroblast cell lines could be demonstrated using im-
munoprecipitation and hemolytic assay [8,9]. In con-
trast, there is no evidence to indicate C1 synthesis in a
fibroblast cell line [10]. Although Clq biosynthesis was
found in primary cultures of guinea pig hepatocytes
[11], no production could be shown in a hepatoma cell
line Hep G3 [12] or in human liver tissue [13]. Human
and primate peritoneal and alveolar macrophages have
been reported to synthesize the 11 S globulin identified
as Clq [14]. De novo synthesis of Clq by cultured
mouse, guinea pig and human macrophages has been
intensively studied and antigenic identities between
serum Clq and macrophage-derived Clq was shown
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[15,16]. Production of Clq by cultured human
monocyte derived macrophages has recently been
described [17].

We now present the molecular cloning and sequenc-
ing of the B-chain of murine Clq and the detection of
Clq in different tissues by Northern blot analysis.

2. MATERIALS AND METHODS

2.1. Isolation of cDNA clones

A mouse alveolar macrophage cDNA library established in the
bacteriophage Agt11 (ML 1005, Clontech Lab., Palo Alto, CA) was
screened by using a human Clq B-chain ¢cDNA probe [18]. A
Pvull/Stul restriction fragment [19] was prepared and radioactively
labeled by nick translation [20]. Recombinant phage plaques were
screened in duplicate on nitrocellulose filter replicas [23]. The filters
were hybridized in hybridization solution supplemented with 10%
dextran sulfate plus 2 x 10° counts per minute (cpm)/ml (spec. act.
10® cpm/xg DNA) nick translated probe for 16 h at 42°C. Filters
were finally washed in 4 X standard salt concentration (SSC;
150 mM NaCl, 15 mM sodium citrate) plus 0.1% SDS for 60 min at
65°C. Air-dried filters were autoradiographed at —70°C with intensi-
fying screens. Positive plaques were rescreened and purified. ADNA
was prepared by standard techniques [21]. Two clones designated B15
and B18 were finally subcloned into the PvuIlI site of the plasmid vec-
tor pAT 153/Pvull/8 [22].

2.2. Sequence analysis

Sequencing was done in bacteriophage M13mp8 by the dideoxy
chain-termination method [23], using deoxyadenosine
5’ -[ar-”S]thiotriphosphate (Amersham, Braunschweig, FRG) and Se-
quenase (US Biochemical Corp., Cleveland, OH). Sequence data
analysis was carried out using the PC/GENE nucleic acid and protein
sequence analysis packages (Genofit, Grand-Lancy, Switzerland).

2.3. Northern blot analysis
Mouse peritoneal macrophages were obtained from thioglycollate
stimulated male Balb/c mice [24] and purified by adhesion onto
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tissue culture plates (petri perm, Heraeus, Hanau, FRG) at 37°C for
4 h. The mouse macrophage-like cell line PU5-1.8 was grown in
RPMI-medium supplemented with glutamine (2 mM), penicillin
(50 1U/ml) and streptomycin (50 zg/ml). RNA was extracted from
mouse tissues and cell suspensions by the guanidine thio-
cyanate/caesium chloride method [25].

RNA samples (20 zg) were denatured and electrophoresed in a 1%
agarose gel containing 0.66 M formaldehyde and blotted overnight
onto nylon filters (Gene Screen, New England Nuclear, Dreieich,
FRG) [26]. Single-stranded anti-sense cDNA probes of mouse Ciq B-
chain were radioactively labeled by primer extension of M13
subclones B15-501 and B18-532 [26] (see fig.1). Hybridization was
performed in a buffer containing 10% dextran sulfate and 50% for-
mamide at 42°C for 20 h. The nylon filters were washed twice with
2 x S8C plus 1% SDS for 30 min at 65°C and finally twice with 0.1
X SSC plus 1% SDS for 30 min at room temperature.

3. RESULTS AND DISCUSSION

3.1. Isolation and nucleotide sequence of mouse Clgq
B-chain ¢cDNA clones

The Pvull/Stul restriction fragment of the ¢cDNA
clone coding for the human Clq B-chain was chosen
because it spans almost the entire coding sequence of
the native protein but excludes all non-coding and
signal sequences.

Approximately 750000 recombinant phage plaques
were screened and 24 positive signals were obtained.
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The insert size of the Agtll clones that were subcloned
into pAT 153/Pvull/8 was estimated by EcoRI diges-
tion and agarose gel electrophoresis. AB15 and AB18
had inserts of about 900 bp and 850 bp, respectively.

BamHI and Mspl restriction fragments of plasmid
clones pB15 and pB18 were subcloned in M13mp8.
Fig.1 shows the sequence strategy and restriction map
of mouse Clq B-chain. The sequencing was done in
both  orientations. In addition to  deox-
yadenosinetriphosphate, deoxyinosinetriphosphate was
used in M13 subclones B15-410 and B15-501 to over-
come the problems of band compression in G-C-rich
regions [27].

The two recombinant Agtll clones B15 and BI18
cover the total coding region (684 bp) and a leader se-
quence (75 bp) containing an in-phase start codon. This
leader sequence is identical to the N-terminal of
secretory signal sequence computed by the PC/GENE
program PSIGNAL [28]. The cDNA clones include a
5'-noncoding region of 11 bp and a 3’-noncoding
region of 151 bp (see fig.2). The mouse Clq B-chain
coding region was found to be highly homologous to
that of human Clq (81% in the nucleotide sequence,
83% in the deduced amino acid sequence). The

- homologies of the mouse and human Clq B-chain
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Fig.1. Cloning strategy and restriction map of murine Cl1q B-chain ¢cDNA clones.
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signal peptide and the 3'-untranslated region were
found to be 60% and 52%, respectively.

A change in the nucleotide sequence at position 112
(C versus G) results in replacement of the Ala residue

Met

Lys

Thr

Gln

Tep
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(amino acid position 9) in the human sequence with a
Gly residue in the mouse. As a consequence the
collagen-like region starts two Gly-Xxx-Yyy- repeats
earlier in the mouse sequence. Two additional amino

Fig.2. The cDNA sequence of the B-chain of mouse C1q. The bar represents the collagen-like region. The boxed sequence shows the positions
of two additional amino acids found in the mouse sequence on comparison with the human sequence. The nucleotide and amino acid sequences

of the B-chain of human Clq are given at only the position where there is a difference seen on comparison with the mouse sequences.

91



Volume 258, number 1

acids (Ser and Met at positions 165 and 166) are not
present in the human sequence. The 4 Cys are com-
pletely conserved, between mouse and man, and the
residues adjacent to these Cys residues are also highly
conserved. While this work was in process a nucleotide
sequence of the murine Clq B-chain was published
[29]. The two sequences are almost identical with the
following exceptions: nucleotide positions 6 and 7 in
our sequence are C and G versus G and A in the se-
quence of Wood et al. [29]. Within the coding se-
quences, nucleotide positions 59, 134, 164, 179 and 182
in our sequenceread C, C, A, Aand Gversus T, T, T,
T and A in that of Wood et al. All 5 positions are last
bases of a codon and do not result in a change of the
deduced amino acid sequence. A discrepancy at posi-
tion 354 (A versus G) leads to an Arg (AGQG) residue in
our sequence instead of a Gly (GGG). According to our
sequence data, the C-terminus of the collagen-like
region appears identical in both the mouse and human
sequences.

Alignment of the mouse sequence with the human se-
quence shows two additional residues, Ser and Met, in
the deduced amino acid sequence of the mouse at posi-
tions 165 and 166, using the genetic code matrix of the
PC/GENE PALIGN-program [30]. This results in a
greater homology than that produced by the insertion
of Asp and Arg (positions 162 and 163) reported by
Wood et al. [29].

At positions 815 and 817 we found two additional C
nucleotides; as a consequence alignment of the mouse
DNA sequence with the human DNA sequence results
in a 52% homology instead of 47% [29]. Two
nucleotides at position 915 and 916 read CG in the se-
quence reported here, instead of AA in that reported by
Wood et al. [29].

3.2. Biosynthesis of the B-chain of Clq by mouse
tissues

Northern blot analysis of total RNA revealed one
band of approximately 1.2 kb (fig.3). This indicates
that the complete mRNA of the Clq B-chain is about
0.3 kb longer than the characterized cDNA clones. The
highest signal was found in RNA preparations of
thioglycollate activated peritoneal macrophages. In
contrast, no signal was obtained in the macrophage-like
cell line PUS-1.8. The murine B-chain probes also
hybridized with a 1.2 kb band of RNA from the lym-
phoid organs, spleen and thymus. The hybridization
signal with mRNA from heart tissue is not quite
understood. A pathological infiltration  of
macrophages into the pericard or endocard can be ex-
cluded. The signal is probably due to resident
macrophage-type cells rather than cardiac muscle cells.

Extremely weak signals were found in kidney, lung,
intestine, and muscle RNA. In addition, it is of interest
to note that even in the liver, the major site of biosyn-
thesis of most complement components, only minute
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Fig.3. Northern blot analysis of total RNA from different mouse
tissues. Filter hybridized with single stranded probe B15-501.
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Fig.4. Northern blot analysis of total RNA from different mouse
tissues. (A) Filter hybridized with single stranded probe B15-532. (B)
Filter B hybridized with nick translated a-actin probe pAC 269 [31].
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amounts of mRNA coding for the B-chain of Clq were
detectable. These weak hybridization signals could be
produced by tissue-macrophages or other macrophage-
like cells, e.g. liver Kupffer cells.

The use of an actin DNA probe (fig.4A) as a control
indicated that the weak signals in most of these tracks
were not due to a lower loading of mRNA compared to
the tracks giving a strong signal with the Clq probe.
The differences in size and intensity of the signals with
the a-actin probe pAC 269 [31] are due to the fact that
a-actin mRNA (1.6 kb) is only found in skeletal mus-
cle. The a-actin probe hybridized well with a mRNA
from cardiac tissue of similar size. a-Actin shows 70%
sequence homology with the nonmuscle 4- and y-actin
sequences [31] and hybridized with a 1.9 kb mRNA.

These studies described the isolation and
characterization of the cDNA coding for the B-chain of
mouse Clqg. Using this cDNA as a probe for the detec-
tion of the B-chain mRNA in cells and tissues, it was
found that macrophages have to be considered as a ma-
jor site of Clq biosynthesis.
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