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Identification of the N-tosyl-L-phenylalanyl chloromethylketone 
modification site in Thermus thermophilus elongation factor Tu 
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EF-Tu from Thermus thermophilus was first labelled with N-[14C]tosyl-L-phenylalaninechloromethylketone and then cleaved by the combined action 
of CNBr and trypsin. The resulting peptides were separated by reversed-phase HPLC. Analysis of the isolated, labelled peptide led to the identifica- 
tion of a sequence which was identical to residues 7688 in T. thermophilus EF-Tu. The TPCK reacttve site is at Cys-82. Kinetic measurements 
of the incorporation of TPCK into native EF-Tu and EF-Tu nicked at position Arg-59 were performed. The results provide evidence that the 

cleavage of the peptide bond between Arg-59 and Gly-60 does not lead to a dramatic conformational change of EF-Tu at the aa-tRNA binding 
site. 
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1. INTRODUCTION 

The elongation factor (EF) Tu is one of the most 
abundant proteins in both prokaryotic and eukaryotic 
cells. During the elongation cycle this protein promotes 
the GTP-dependent binding of aminoacyl-tRNA to the 
A-site of ribosomes. One of the interesting properties 
of the protein is its ability to interact with numerous 
ligands. The protein binds, in addition to aa-tRNA, 
GDP, GTP, ppGpp, EF-Ts, the antibiotics kirromycin 
and pulvomycin and certain ribosomal components 
(for review see [l]). 

poly U-directed poly Phe synthesis [7]. The interaction 
with EF-Ts was also altered to some extent. We have 
now tested whether the conformational transition of 
EF-Tu upon introduction of the specific nickage alters 
its reactivity towards TPCK-modification. 

2. MATERIALS AND METHODS 

N-Tosyl-L-phenylalanylchloromethylketone (TPCK) 
was used as a specific irreversible inhibitor of EF-Tus 
from E. coli, Bacillus stearothermophilus and Bacillus 
subtilis [2-51. This compound blocks the aa-tRNA bin- 
ding site of the factors by labelling Cys-8 1 in E. coli and 
the homologous cysteine residue in B. stearother- 
mophilus. 

The preparation of r4C-labelled TPCK has been described 
elsewhere [9]. TPCK-treated trypsin was obtained from Worthington 

(NJ, USA). Acrylamide and N,N ‘-methylene bis(acrylamide) were 
from BRL (Eggenstein, FRG). Trifluoroacetic acid (sequencing 
grade) was from Pierce (Rodgau, FRG) and 2-propanol (LiChrosolv) 
was purchased from Merck. EF-Tu GDP was isolated from T. ther- 
mophilus cells, strain HB8, harvested at the late log-phase, as 
described by Leberman et al. [lo]. 

The formation of a specifically nicked EF-Tu, which 
often occurs during preparation, has been reported for 
T. thermophilus [6,7] and for T. aquaticus [8] proteins. 
We previously found that the nicked EF-Tu from T. 
thermophilus is fully active in nucleotide binding and 
ternary complex formation but inactive in promoting a 

Limited digestion of EF-Tu was done as follows: 20 pg EF-Tu in 

20~1 100 mM N-methylmorpholine acetate, pH 8.1, were treated 
with 1 gg trypsin at 37°C. To stop the digestion, mixtures were frozen 
using dry-ice in 2-propanol and immediately lyophilized. Subsequent 

cleavage of EF-Tu with CNBr and analysis of the resulting fragments 
by SDS-urea-PAGE was done as described previously [Ill. 

For total tryptic digestion, peptides (1 mg/ml) were incubated with 
2% (w/w) trypsin for 4 h at 37°C in the above buffer. 

Peptide analysis by HPLC was performed using a reversed-phase 
system with 0.12% aqueous trifluoroacetic acid as solvent A and 
0.1% trifluoroacetic acid in 70% 2-propanol as solvent B and a flow 

rate of 0.4 ml/min through a self-packed Vydac Cd column (4.6 x 
250 mm). Fractions of 0.4 ml were collected. The Vydac material was 
from ‘The Separation Group’ (Hesperia, CA, USA). 
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Labelling of EF-Tu with TPCK was performed in the following 
manner: 50pM EF-Tu from T. thermophilus was incubated with 
5OOrM [‘?]TPCK (4.16 Ci/mol) in 20 mM Tris-HCI, pH 8.1, 
10 mM MgCl2 and 100 mM NHXI for 12 h at 4”C, then dialyzed 
twice against 5 mM ,f?-mercaptoethanol in Hz0 (adjusted to pH 7.0 
with NHdOH) at 4°C. The final solution was lyophilized. 
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Amino acid analysis on a Durrum D-500 Amino Acid Analyzer was 
done as described elsewhere [ 121. Sequencing of the “C-labelled pep- 

tide was carried out in an Applied Biosystems 470A gas-phase se- 
quencer. Purified polybrene was used for the fixation of the peptide. 
PTH-amino acids were identified by HPLC on a column (250 x 

4.6 mm) of ODS (Ultrasphere, Beckman) by isocratic elution with 
acetonitrile in an acetate buffer. 

3. RESULTS AND DISCUSSION 

Only one cysteine residue has been identified in T. 
thermophifus EF-Tu by sequencing of the gene [ 11,131. 
This cysteine is in position 82 of the polypeptide chain 
and corresponds to an invariable residue present in 
most bacterial EF-Tus sequenced to date. It is believed 
to be involved in aminoacyl-tRNA binding and can be 
specifically modified with TPCK, as shown for EF-Tu 
from E. coli and B. stearothermophilus [12,14]. We 
have tested this reaction with the T. thermophilus pro- 
tein using 14C-labelled reagent. After incubation of EF- 
Tu . GDP with TPCK for 12 h the reagent was found to 
be crosslinked to EF-Tu in a stoichiometric amount 
(0.97 nmol TPCK/nmol EF-Tu *GDP). The modified 
protein was first treated with trypsin under conditions 
which lead to the specific hydrolysis of the 
Arg-59/Gly-60 peptide bond and subsequently cleaved 
with cyanogen bromide (fig. 1). The resulting fragments 
(mixture I, fig.1) were separated by reversed-phase 
HPLC. The modified peptide was further digested with 
trypsin and the resulting peptides (mixture II, fig.1) 
were again separated by a reversed-phase HPLC. TWO 

tryptic peptides had a molecular weight high enough to 
be retained on the Vydac-material. Only the second 
peptide, however, carried radioactivity (fig.2). This 
labelled peptide was subjected to Edman degradation 
yielding the sequence His-Tyr-Ser-His-Val-Asp-Xaa- 
Pro-Gly-His-Ala-/-Tyr. This is in complete agreement 
with the EF-Tu sequence His(76)-Tyr-Ser-His-Val-Asp- 
Cys-Pro-Gly-His-Ala-Val-Tyr(88). Instead of cysteine 
in the seventh position, a PTH-derivative of a modified 
amino acid was found in a yield of only l/6 of the PTH 
amino acids from other degradation cycles. Amino acid 
analysis of TPCK modified EF-Tu additionally con- 
firmed that the only modified residue is a derivative of 
cysteine (not shown). This result, together with the 
achieved TPCK labelling yield of EF-Tu of nearly 
loo%, allows us to conclude that only Cys-82 in T. 
thermophilus EF-Tu becomes specifically modified by 
TPCK. 

Analysis of the protein modified by [14C]iodoacet- 
amide or [14C]TPCK confirms that there is only one 
cysteine residue in T. thermophilus EF-Tu. This is in 
agreement with the results of the gene sequencing 
[l 1,131 and disproves the results of Nakamura et al. 
[ 151, which imply a disulfide bridge in T. thermophilus 
EF-Tu. The reason for this misinterpretation could lie 
in the observation that Cys-82 in the thermophilic pro- 
tein could only be modified with iodoacetamide using 
denaturing conditions (unpublished result) whereas the 
corresponding cysteine (residue 81) in E. coli EF-Tu is 
reactive under native conditions [ 161. As we have now 

1 

November 1989 

405 

1 

[14c]~pc~ modification 

405 

59 6; ;* 

60 >k 

limited 
trypsin treatment 

, 
82 92 

CNBr cleavage 

60 >I< 92 93 405 

b I c_---m--’ 
82 CB2 - CB12 

HPLC 

60 

H-Y2 - 
* trypsin treatment 

95 % 
62 

5 % ““,, 
>k 92 

62 

* 
60 75 

I 
62 (11) 

Fig.1. Scheme of the isolation of the [‘4C]TPCK-labelled peptide His-76-Arg-90. The modified amino acid residue Cys-82 is marked by an 
asterisk. Mixture II was used for the HPLC separation shown in fig.2. 
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Fig.2. Isolation of the ~14CJT~CK-label~ed peptide 76-90. A 
radioactive peptide spanning residues 60-92 (16 nCi) derived from a 
preceding HPLC isolation step was treated with trypsin and applied 
on a Vydac C4 column. For conditions see section 2. (A) Absorbance. 
(B) Radioactivity profiie. The radioactive peak ‘a’ was pooled and 

subjected to Edman degradation on a gas-phase sequencer. 

shown the denaturation is necessary in the thermophific 
protein in order to increase the accessibility of Cys-82 
but not for a cleavage of a disulfide bond. 

A lower cysteine content of extreme thermophilic 
proteins compared to their mesophilic variants has been 
predicted [ 171. This can now be supported by analysis 
of the sequence of T, t~e~~op~i~~s EF-Tu and the 
recently published EF-Tu gene sequence of the extreme 
thermophili~ eubacterium ~~~r~otQgu ~~~iti~a [ 181. 
The EF-Tus of these organisms contain one and two 
cysteine residues, respectively, compared to 3 cysteines 
in the mesophilic E. co& EF-Tu. 

a 
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Fig.3. Kinetics of TPCK-labelling of native and nicked EF-Tu. 50 ,uM 
EF-TueGDP containing 20% of nicked EF-Tu was incubated with 
500 CM (“CITPCK at 4°C as described in section 2. At the indicated 
times, ahquots of 10 Fg EF-Tu were each withdrawn and analyzed by 
10% SDS-PAGE and subsequent autoradiography. The exposed X- 
ray film was scanned at 550 urn along each lane using a D&g 
spe~trophotometer (Beckman) equipped with a film scanning device. 

Areas above blanks were integrated, 

In contrast to the iodoacetamide modification, 
IabeIling of 7: t~er~op~i~~s EF-Tu with TPCK was 
achieved under native conditions, This fact underlines 
the proposed mechanism of the TPCK reaction; name- 
ly, that TPCK mimics the binding of the 3 ‘-end of aa- 
tRNA prior to the crosslinking event. The specific and 
quantitative modification of Cys-82 by [‘4C]TPCK is in 
agreement with the results obtained with studies on EF- 
Tu from E. coli 114,191 and B. stearot~er~~~~i~us [12]. 

We have previously noticed that EF-Tu cleaved at 
Arg-59 is not able to promote a poly U-directed poly 
Phe synthesis 171. This could be due to reduced ability 
to bind aa-tRNA. Since the TP~K-modifiable cysteine 
residue is believed to be involved in the binding of the 
3 ’ -end of aa-tRNA, we compared the kinetics of TPCK 
binding to native EF-Tu and EF-Tu nicked at Arg-59 
(during the preparation of the protein). An EF-Tu mix- 
ture containing 20% nicked protein was incubated with 
a IO-fold excess of [‘4C]TPCK (fig.3). The extent of 
modification of native EF-Tu and EF-Tu fragment 
(60-405) were determined by autoradio~raphy after 
separation by SDS-PAGE (fig.3). The ratio of 
modified native and nicked EF-Tu is the same at each 
time tested. The tl/2 of TPCK modification for both 
EF-Tu species was 1 h 50 min. If the protein were to 
undergo a conformational change in the vicinity of the 
cysteine residue at the aa-tRNA binding site, then the 
accessibility of this cysteine residue would probably be 
reduced. The result of identical rates of TPCK 
modification for both EF-Tu forms implies that this is 
not the case, This is completely different to the situa- 
tion upon conversion of EF-Tu + GDP into EF- 
Tu -GTP. It was shown for EF-Tu from E. coli and B. 
stearothermophilus that the TPCK modification rates 
depend directly on the conformation f 12,203 * Although 
it had been suggested that the corresponding cysteine 
residue is in the vicinity of the 3’-end of the bound aa- 
tRNA, this residue might not be essential for aa-tRNA 
binding since the sequenced EF-Tu from ~~c~o~occ~s 
Cuteus has at this position an alanine residue [21 J. 
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