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Previously we have found that elongation factor 2 (EF-2) from mammalian cells can be phosphorylated by a special Caz’/ 
calmodulin-dependent protein kinase (EF-2 kinase). Phosphorylation results in complete inactivation of EF-2 in the 
poly(U)-directed cell-free translation system. However, the partial function of EF-2 at&ted by phosphorylation remained 
unknown. Here we show that phosphorylated EF-2, unlike non-phosphorylated EF-2, is unable to switch ribosomes 
carrying poly(U) and Phe-tRNA in the A site to a puromycin-reactive state. Thus, phosphorylation of EF-2 seems to 
block its ability to promote a shift of the aminoacyl(peptidyl)-tRNA from the A site to the P site, i.e. translocation itself. 
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1. INTRODUCTION 

It has been shown that elongation factor 2 
(EF-2) from mammalian cells can be phosphorylat- 
ed [l] and that up to 50% of the EF-2 purified 
from cell extracts is phosphorylated [2-41. Phos- 
phorylation of EF-2 is catalyzed by a Ca*+/cal- 
modulin-dependent protein kinase which is specific 
for EF-2 and which was called Ca*+/calmodulin- 
dependent protein kinase III [5,6] or EF-2 kinase 
[3,4]. Phosphorylation of EF-2 results in its com- 
plete inactivation in the cell-free translation system 
[2,4,6,7] and presumably represents the key mech- 
anism of translational control at the level of poly- 
peptide chain elongation. 

It is of interest why phosphorylated EF-2 is inac- 
tive in protein synthesis. This is not a simple ques- 
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tion, as the EF-2 working cycle consists of several 
partial reactions (see e.g. [8]) and the blocking of 
any of them would lead to inactivation of EF-2 in 
translation. These partial reactions are: (i) binding 
of EF-Cl- GTP to the ribosome; (ii) promoting of 
the peptidyl-tRNA movement from the ribosomal 
A site to the P site and the release of deacylated 
tRNA; (iii) ribosome-dependent hydrolysis of 
GTP; (iv) dissociation of EF-G - GDP from the 
ribosome; (v) exchange of GDP bound to EF-2 for 
GTP. 

In this work we have obtained evidence that the 
partial reaction which is arrested by phosphoryla- 
tion is the EF-2 catalysis of the peptidyl-tRNA 
shift from the A site to the P site. In other words, 
the phosphorylation of EF-2 blocks translocation 
itself. 

2. MATERIALS AND METHODS 

EF-2 was purified from the ribosome-free extract of rabbit 
reticulocytes by the following procedure. 400 ml (about 50 g of 
total protein) obtained as in [9] was applied to DEAE-cellulose 
column (5 x 20 cm, DE-52, Whatman) equilibrated with buffer 
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A: 20 mM Tris-HCl, pH 7.6, 1 mM MgC12, 7 mM ,& 
mercaptoethanol, 10% glycerol. EF-2 was eluted by buffer A 
with 200 mM KC1 and applied to a hydroxyapatite column 
(2.6 x 30 cm, HA-Ultragel, LKB) equilibrated with 5 mM 
potassium phosphate buffer, pH 7.0, with 7 mM fi- 
mercaptoethanol and 10% glycerol. EF-2 was eluted by a linear 
potassium phosphate gradient (5-250 mM). Fractions contain- 
ing EF-2 activity were collected, diluted with an equal volume 
of buffer A and applied to a Mono Q HR lo/16 column (Phar- 
macia) equilibrated with buffer A and connected to the FPLC 
system (Pharmacia). Non-adsorbed material containing EF-2 
was dialyzed overnight against buffer A and chromatographed 
once again on a Mono Q HR lo/16 column in the same condi- 
tions. EF-2 was eluted with linear KC1 gradient (lo-200 mM). 

EF-2 kinase was purified from rabbit reticulocyte ribosome- 
free extract as in [4]. The reaction mixture (100 ~1) for EF-2 
phosphorylation contained 60 fig of EF-2, 2 pg of EF-2 kinase, 
1 pg of calmodulin, 50 mM Hepes-KOH, pH 7.6, 10 mM 
magnesium acetate, 150 PM CaCl2,5 mM dithiothreitol, 70 PM 
ATP. The reaction was performed for 30 min at 30°C and 
stopped by the addition of lop1 of 1 mM trifluoperazine. 

40 S and 60 S ribosomal subunits were obtained as in [lo]. 
80 S ribosomes carrying poly(U) and [3H]Phe-tRNA in the A 
site (A-ribosomes) were prepared from 300 pmol of 40 S and 
60 S subunits mixed in 1 ml of 20 mM Tris-HCl, pH 7.6, 
100 mM KCI, 10 mM MgC12, 2 mM dithiothreitol, 1.2 mM 
GTP with 0.5 mg poly(U) (Boehringer), 0.52 mg of crude 
Escherichiu co/i tRNA, charged with [‘H]phenylalanine (Amer- 
sham) (2000 cpm per 1 ,ug of crude tRNA) and 30 yg of EF-1. 
After 5 min incubation at 37°C the reaction mixture was cen- 
trifuged through 1 ml of 10% sucrose prepared in the same buf- 
fer, without GTP. Centrifugation was performed for 2 h in a 
type 75 rotor at 45000 rpm (4’C). The ribosomal pellet was 
dissolved in 400 ~1 of the same buffer. Ribosomes obtained con- 
tained about 1 pmol [‘HIPhe-tRNA per 1 mol of 80 S 
ribosomes. 

Translocation reaction was performed with 3.5 pmol of A- 
ribosomes in 50 ~1 of the 40 mM Tris-HCl buffer, pH 7.6, con- 
taining 100 mM KCl, 10 mM MgC12, 2 mM dithiothreitol, and 
varying amounts of EF-2. In different cases either 0.2 mM 
GTP, or 0.2 mM GMPPCP, or 0.2 mM GTP and 0.2 mM 
fusidic acid were added. The reaction mixture was incubated at 
37°C. 

After the translocation reaction, 50~1 of the 40 mM Tris- 
HCl buffer, pH 7.8, with 2 mM puromycin (Boehringer), 
10 mM MgCls, 250 mM NH&I, 1 mM dithiothreitol and 
1 mM EDTA was added. The reaction mixture was incubated 
for 1 h at 4°C. [‘HIPhe-puromycin was extracted with 
ethylacetate essentially as in [ 111: 100 ,ul of 2 M sodium acetate, 
pH 5.5, and 1 ml of ethylacetate was added. Then the mixture 
was shaken and the phases were separated by centrifugation. 
Radioactivity was determined in a 0.5 ml of the organic phase 
in 5 ml of 1:2 Triton X-lOO/scintillation mixture and 
multiplied by two. Thus the values in the tables correspond to 
the whole amount of [3H]Phe-puromycin in the organic phase 
of each probe. 

3. RESULTS 

The simplest way to measure the translocation 
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reaction itself is the puromycin test. It is well 
known that EF-2 is capable of transferring 
aminoacyl-tRNA from the puromycin-nonreactive 
state (A site) to the puromycin-reactive state (P 
site) [ 12,131. This reaction can take place in the 
presence of non-hydrolyzable GTP analogs instead 
of GTP (GMPPCP or GMPPNP) [12,13]. 
However, in the presence of non-hydrolyzable 
GTP analogs EF-2 works stoichiometrically [ 131. 

It is shown in table 1 that the addition of increas- 
ing amounts of EF-2 to the A-ribosome prepara- 
tion in the presence of GMPPCP results in the 
increase of [3H]Phe-puromycin which can be ex- 
tracted with ethylacetate. The reaction reaches the 
plateau level in 15 min which is in accordance with 
the data reported by Tanaka et al. [ 131. Saturation 
is observed at 0.5 /Ig of EF-2, i.e. at the ratio of 
EF-2:ribosomes of 5 : 3. 

Then we studied the ability of the phosphory- 
lated EF-2 to catalyze the shift of [3H]Phe-tRNA 
into the puromycin-reactive state. As can be seen 
from table 2, the addition of phosphorylated EF-2 
in the presence of GMPPCP does not increase the 
amount of [3H]Phe-puromycin extracted with 
ethylacetate, as compared with the control experi- 
ment without EF-2 (see table 1). In the presence of 
GTP or GTP with fusidic acid, the phosphorylated 
EF-2 promotes an increase of [3H]Phe-puromycin 
only slightly. This slight increase could be ex- 
plained if the phosphorylated EF-2 still works, but 
at a very slow rate. This seems unlikely, however, 
as prolonged incubations do not lead to an increase 
of [3H]Phe-puromycin. It is more likely that the 
slight activity of the phosphorylated EF-2 is due to 

Table 1 

Dependence of [‘HIPhe-puromycin yield on the amount of 
EF-2 and incubation time 

EF-2 
olg) 

Yield of Incubation time 
[‘HIPhe-puromycin (min) 

(pmol) 

0.10 15 
0.13 0.70 15 
0.26 1.20 15 
0.52 2.24 15 
1.24 2.52 15 
0.80 1.98 5 
0.80 2.44 15 
0.80 2.40 30 
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Table 2 

Comparison of ability of native and phosphorylated EF-2 to 
catalyze translocation 

Factor Addition Yield of Incubation 

(0.8 pg) [‘HIPhe-puromycin time 
(pmol) (min) 

EF-2 GTP 3.02 15 
EF-2 GTP, fusidic acid 2.88 15 
EF-2 GMPPCP 2.30 15 
P-EF-2 GTP 0.42 15 
P-EF-2 GTP, fusidic acid 0.22 15 
P-EF-2 GMPPCP 0.16 15 
P-EF-2 GMPPCP 0.20 60 
P-EF-2 GMPPCP 0.20 120 

Table 3 

Catalysis of translocation by native EF-2 in the presence of 
phosphorylated EF-2 

Factor &g) Yield of 
[3H]Phe-puromycin (pmol) 

EF-2 (0.15) 0.82 
EF-2 (0.30) 1 .I6 
EF-2 (0.60) 2.22 
EF-2 (1.20) 2.46 
EF-2 (2.40) 2.44 
EF-2 (0.15), P-EF-2 (0.45) 1.34 
EF-2 (0.30), P-EF-2 (0.90) 2.08 
EF-2 (0.60), P-EF-2 (1.80) 2.20 

a small contamination of nonphosphorylated EF-2 
in the preparation. 

We also studied the effect of the phosphorylated 
EF-2 on the activity of the nonphosphorylated 
EF-2 in this system. Previously, we have found 
that in poly(U)-directed system of polyPhe syn- 
thesis the phosphorylated EF-2 inhibits the activity 
of nonphosphorylated EF-2 [4]. However, in the 
case of the translocation reaction measured by 
puromycin reactivity the phosphorylated EF-2 
does not inhibit the nonphosphorylated EF-2, and 
even noticeably stimulates it (see table 3). 

4. DISCUSSION 

Previously we have shown that the phosphory- 
lated EF-2 is completely inactive in poly(U)- 
directed polyPhe synthesis [2,4,7]. However, the 
partial function of EF-2 arrested by phosphoryla- 
tion remained unknown. Here we have found that 

the phosphorylated EF-2 is unable to shift Phe- 
tRNA into the puromycin-reactive state. In other 
words, the phosphorylated EF-2 is unable to 
catalyze translocation. This rules out the possibili- 
ty that the partial reaction of EF-2 arrested by 
phosphorylation is the step of dissociation of EF-2 
from the ribosome (as in the presence of fusidic 
acid). Hence, the phosphorylated EF-2 is either 
unable to bind GTP, or the phosphorylated EF-2 
complexed with GTP is unable to bind to the 
ribosome, or the phosphorylated EF-2 is unable to 
catalyze translocation after binding to the 
ribosome. The third explanation seems to us the 
most likely as we have found (unpublished ex- 
periments) that the phosphorylated EF-2 can bind 
to 80 S ribosomes in the presence of GMPPCP. 
We believe that phosphorylated EF-2 can bind to 
GTP as well as to the ribosome, but the binding to 
the ribosome is not correct, or something has hap- 
pened to the EF-2 structure which makes EF-2 
unable to catalyze translocation. 

The ability of the phosphorylated EF-2 to bind 
to the ribosome also follows from the fact that it 
competes with the nonphosphorylated EF-2 in 
poly(U)-directed translation [4]. Translocation ex- 
periments reported in this paper clearly show that 
this binding is not enough to promote translo- 
cation. 

In any case it is clear that phosphorylation af- 
fects EF-2 activity at the level of the interaction of 
EF-2 with the pretranslocation state ribosomal 
complex. It is noteworthy that the sites of 
phosphorylation: Thr 53, Thr 56 and Thr 58 (Ov- 
chinnikov et al., in preparation) are located in the 
so-called E-domain [14] (between amino acids 53 
and 77); this domain is homologous in all elonga- 
tion factors and presumably is crucial for interac- 
tion of the factors with the ribosome or with 
peptidyl-tRNA [ 141. 
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