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We have analyzed the effect of CD3/T-cell receptor stimulation on GTP hydrolysis and GTP binding. We show that

stimulation of Jurkat, T-cell, membranes with OKT3 results in a 50% increase in GTP hydrolysis which is specifically

inhibited by GDP. Pretreatment of the membranes with neither pertussis toxin nor cholera toxin inhibited the GTP hy-

drolysis. We also show that stimulation with OKT?3 increases the binding of GTPy8 to Jurkat membranes. These data
strongly implicate the involvement of a G-protein in CD3/T-cell receptor signalling.
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1. INTRODUCTION

G-proteins are a group of GTP hydrolysing,
membrane associated, proteins that link receptor
stimulation to several effectors including adenylate
cvclase [i]. Receptors can be coupled to the
adenylate cyclase via a stimulatory (and cholera
toxin-sensitive) Gs-protein or via an inhibitory
(and pertussis toxin-sensitive} Gj-protein. Recent-
ly, the involvement of a G-protein, termed Gy, in
the breakdown of phosphatidylinositol (PI) was
suggested [2]. The G-protein that stimulates
phospholipase C (PLC) can be either sensitive or
insensitive to pertussis toxin depending on the cell
type studied. Thus, a pertussis toxin-sensitive G-
protein has been shown to couple the receptor for
f-Met-Leu-Phe (fMLP) to activation of PLC in
neutrophils [3,4] whereas the G-protein that links
the TRH receptor on GHj pituitary cells [5] and
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the Ig-receptor on B-cells [6] to PLC is pertussis
toxin-insensitive.

The human T-ceil receptor consists of the
clonotypic antigen-specific Ti o-8 heterodimer and
the monomorphic CD3 complex. The CD3 com-
plex comprises at least four, and possibly five, in-
tegral membrane proteins and is suggested to be
involved in transmembrane signalling following
antigen binding to the T-cell receptor. Stimulation
of the CD3/T-cell receptor by antigen or specific
antibodies leads to an increased inositol phosphate
formation and to increased intracellular Ca’* [7].
The evidence for the involvement of G-proteins in
T-cell activation is so far only indirect. The fact
that G-protein modulation by bacterial toxins were
able to block T-cell activation [8,9] might be due to
indirect action on i.e. cAMP. Similarly, the fact
that nonhydrolysable GTP analogues in permea-
bilized cells or cell membranes mimic cellular
events, such as inositol phosphate formation and
serine esterase release, involved in T-cell activation
[10,11] is suggestive but not conclusive evidence
since the effect could be mediated by G-proteins
that are involved in a parallel signal transduction
pathway. Moreover, GTP may have effects that
are independent of membrane based G-proteins in-
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cluding the recently reported ability to release Ca**
from intracellular stores [12]. The study of GTP
hydrolysis or GTP binding upon stimulation of
specific receptors on cellular membranes appears
to be a more direct way to investigate G-protein
coupling to receptors. In this report we demon-
strate that stimulation of the CD3/T-cell receptor
complex results in increased hydrolysis and bind-
ing of GTP to T-cell membranes.

2. EXPERIMENTAL

2.1. Cells

The human leukemic T-cell line, Jurkat, was maintained in
RPMI-1640 supplemented with 7.5% fetal calf serum, I-
glutamine and penicillin/streptomycin.

2.2, Chemicals

The monoclonal anti-CD3-antibody, OKT3, was from a
hybridoma obtained from the American Type Culture Collec-
tion (no.CRL 800) and purified on protein A-Sepharose. Per-
tussis toxin was a kind gift from Dr Per Askeldf at Statens
Bakteriologiska Laboratorium, Stockholm, Sweden. Cholera
toxin was purchased from Sigma. [y-**P]GTP and [**S]GTP+S
were purchased from NEN, DuPont.

2.3. GTP hydrolysis assay

Jurkat cell membranes were prepared by sonication in 25 mM
Tris, § mM MgCl;, 1 mM PMSF (pH 7.6). Cell debris was
removed by centrifugation at 150 x g for 5 min. The superna-
tant was collected and soiuble proteins were removed by cen-
trifugation at 10000 x g for 10 min. The fractions were
analysed by a 5' -nucleotidase assay as described before [13]. All
of the nucleotidase activity remained in the membrane fraction
demonstrating an almost complete recovery of plasma mem-
branes (homogenate 94.2 nmol/mg per h; membrane fraction,
418.5 nmol/mg per h and soluble fraction, 0 nmol/mg per h).
The pellet was resuspended and protein concentration assayed.
This crude membrane fraction was kept on ice until used. In-
cubations were carried out at 30°C in a final volume of 100 4l.
The reaction buffer consisted of 10 mM Tris {pH 7.8}, 10 mM
MgCla, 1 mM EDTA, 0.2% BSA, 0.5 mM ascorbic acid,
0.5 mM adenyi-5-yl imidodiphosphate, an ATP regenerating
system (0.1 mM ATP, 3 mM creatine phosphate and 75 U/ml
creatine phosphokinase), 100 nM [-**P}GTP with GDP and
OKT3 as indicated. The reaction was started by the addition of
20 #g of membrane protein and stopped by the addition of
700 1 of 5% Norit A in 0.15 M potassium phosphate buffer
(pH 7.0). After centrifugation at 10000 x g for 15 min S00 xl
of supernatant was collected and the released *P; counted.

2.4. GTP binding assay

Binding reactions were carried out at 30°C in 50 zl of 10 mM
Tris (pH 7.8), 10 mM MgClL, |1 mM EDTA, 0.2% BSA,
0.5 mM ascorbic acid, 0.5 mM adenyl-5-yl-imidodiphosphate,
10 nM [**SIGTP»S and 20 zg/m! of OKTJ as indicated. The
reaction was started by the addition of 50 xg membrane protein
and stopped by the addition of 450 #] of icecold stopbuffer con-
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taining 10 mM Tris (pH 7.4), 100 mM NaCl and 25 M
GTP,S. Bound ligand was separated from free by filtration
through Whatman GF/C filters with icecold stopbuffer without
GTP,S.

2.5. Toxin treatment of Jurka! membranes

Pertussis toxin and cholera toxin were preactivated with
15 mM dithiothreitol at 37°C for 30 min. The membranes
(2 mg/ml) were then treated with either 25 gg/ml of pertussis
toxin or 50 4g/ml of cholera toxin in 0.15 M potassium
phosphate (pH 7.5), 1 mM NAD, 0.5mM ATP, 10 mM
thymidine and 50 sM GTP at 30°C for 30 min. Following treat-
ment the membranes were resuspended in 10 mM Tris (pH 7.6)
and kept on ice until used.

3. RESULTS AND DISCUSSION

Receptor-mediated activation of a G-protein
regulated effector systern is initiated by the re-
placement of bound GDP by GTP [14] and also
associated with the activation of a high affinity
GTPase as originally shown for adenylate cyclase
[15]. Therefore, in order to obtain direct evidence
for regulation of a G-protein by the CD3/T-cell
receptor complex we have examined the effect of
CD3 stimulation on GTPase activity in Jurkat
membranes.

A significant GTP hydrolysis activity is present
in control Jurkat membranes. Stimulation with
QKT3 was found to increase GTP hydrolysis by
50% (fig.1) whereas stimulation with a nonac-
tivating anti-CD4 antibody did not affect the
hydrolysis (not shown). Hydrolysis was linear
throughout the 15 min interval as described before
[16]. The maximal hydrolysis rate was 3.7 pmol
per mg membrane protein min " which is similar to
the activity described in S49 lymphoma cells [17)
but significantly lower than reported in CT6 T-
cells [16]. The reason for this difference is unclear
but may reflect a relatively low G-protein content
in Jurkat membranes. It should also be noted that
crude membrane preparations as used here and by
others [16,17] contain a substantial amount of
mitochondria making our estimation only relative.

A dose-response curve shows that the increase in
GTP hydrolysis was half maximal at an antibody
concentration of 2.8 zg/ml (fig.2). This is com-
parable with antibody concentrations sufficient for
Ca’* influx and inositol phosphate formation in T-
lymphocytes [11,18].

GDP inhibits GTP hydrolysis by competing with
GTP binding [14]. GDP was found te inhibit
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Fig.1. Stimulation of [7-32P]GTP hydrolysis by OKT3, Jurkat
membranes (20 xg) were incubated with 100 nM [3-*’P]GTP at
30°C for the indicated times in the presence (closed circle) and
absence (open circle) of 20 gg/ml of OKT3. GTP hydrolysis
was determined as the release of **P;. Fach point is the mean
of triplicate determinations. Standard deviations were less than
10%. The result is representative of five experiments.

OKT3 stimulated GTP hydrolysis (fig.3) whereas
ADP did not (not shown), A half-maximal inhibi-
tion was seen at 19 4M of GDP.

Several G-proteins, including Gy and Gj, are
substrates for pertussis toxin catalyzed ADP-
ribosylation that inhibits the G-protein [14], If the
CD3/T-cell receptor caupled G-protein is similarly
pertussis toxin-sensitive, one would expect that ef-
fects induced by CD3 stimulation should be in-
hibited by toxin pretreatment. Pertussis toxin has
been reported to inhibit CD3-stimulated Ca®* in-
flux [8,19]. However, others- have reported that
pertussis toxin affects PLC by a mechanism
distinct from direct G-protein inhibition in T-
Iymphocytes [20]. Our data do not support the in-
volvement of a pertussis toxin-sensitive G-protein
in CD3/T-cell receptor signalling {(table 1). Pre-
treatment of Jurkat membranes with 25 4g/ml of
pertussis toxin did not inhibit OKT3 stimulated
GTP hydrolysis although we have found pertussis
toxin substrates of molecular masses between 39
and 41 kDa using ADP-ribosylation in Jurkat
membranes (not shown). In pertussis toxin-sen-
sitive systems a significant inhibition of agonist-
stimulated GTPase activity has been detected at
toxin concentrations of 10 zg/m! [17]. We have
also not been able to inhibit either OKT3-stimu-
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Fig.2. Hydrolysis of {1-**P]GTP at different concentrations of

OKT3. Jurkat membranes (20 »g) were incubated with 100 nM

[»-**PIGTP at 30°C for 10 min with the indicated concentra-

tions of OKT3. Each point is the mean of triplicate deter-

minations. Standard deviations were less than 10%. The result
is representative of iwo experiments.

lated inositol phosphate turnover or GTPase ac-
tivity when preincubating intact Jurkat cells with
pertussis toxin for 20 h (not shown). We have
found that also cholera toxin stimulates ADP-ribo-
sylation in Jurkat membranes as well as increases
the formation of cAMP in intact cells (not shown).
However, pretreatment of Jurkat membranes with
50 gg/ml of cholera toxin did not affect
OKT3-stimulated GTP hydrolysis. This is in ap-
parent contrast with a previous veport showing
that cholera toxin inhibits Ca®* influx and IP; for-
mation in Jurkat cells [9]. However, the cholera
toxin-induced activation of Gs-proteins leads to an
increased formation of cAMP which could affect
IP3 formation at a step subsequent to the G-
protein as recently reported [21]. The toxin pre-
treatment caused a slight increase in basal and
stimulated GTPase activity. This may be due to the
membrane binding and mitogenic effect of these
toxins [22,23]. However, pretreatment of intact
cells or short term membrane stimulation did not
cause an increased GTPase activity (not shown)
making this explanation unlikely.

In order to substantiate further the association
of a G-protein to the CD3/T-cell receptor we
analyzed the binding of the nonhydrolysable GTP
analogue GTP9S to Jurkat membranes after
stimulation with OKT3, We found that OKT3
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Fig.3. Inhibition of OKT3-stimulated hydraelysis of [y->*P]GTP
by GDP. Jurkat membranes (20 zg) were incubated with
100 nM [1-*P]GTP at 30°C for 10 min with the indjcated
concentrations of GDP and 20 xg/ml of OKT3. Each point is
the mean of triplicate determinations. Standard deviations were
less than 10%. The result is representative of two experiments.

causes a minor, but statistically significant, in-
crease in the binding of GTP+S by approximately
20% (fig.4). This is in line with the stimulation of
GTP4S binding in HL-60 cells by fMLP [4]. In
contrast to CT6 cells [17], GTPS binding did not
reach equilibrium within the [0 min period
studied. Instead incubations for as long as 60 min

Table 1
Effect of pretreatment of membranes with pertussis or cholera
toxin
Pretreatment Stimulation GTPase activity
{pmol/mg per 10 min)

- - 178 1.1

- OKT3 26.6 £ 0.5

PTX - 212+ 04

PTX OKT3 31.8 £ 0.7

CT - 23.7x 20

CT OKT3 320+ 1.2

Effect of pertussis toxin and cholera toxin on OKT3-stimulated
hydrolysis of [y~**P]GTP. Jurkat membranes were pretreated
with 25 xg/ml of pertussis toxin or 50 zg/ml of cholera toxin at
30°C for 30 min. The membranes were then resuspended and
analyzed for GTPase activity in the presence or absence of
20 pg/ml of OKT3. The results are expressed as mean + SE of
triplicate determinations. The result is representative of three
experiments
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Fig.4. Stimulation of [**S]GTPyS binding by OKT3. Jurkat
membranes (50 ug) were incubated with 10 nM [**S]GTP»8
(10° cpm) at 30°C with (closed circles) or without {open circles)
20 gg/ml of OKT3 for the indicated times. Binding of
[”S}GTPyS was measured as described in section 2. Non-
specific binding was less than 10% in all determinations. Each
point is the mean of triplicate determinations. Standard
deviations were less than 10%. * and ** indicate statistical
significance (p < 0.1 and p < 0.05 by a two-tailed Student’s r-
test). The result is representative of three experiments.

were necessary for equilibrium (not shown). This is
compatible with a lower rate of GTP turnover in
Jurkat cells and agrees with the already noted
lower GTPase activity.

Qur data suggest the involvement of a pertussis
toxin- and cholera toxin-insensitive G-protein in
signalling via the CD3/T-cell receptor complex. It
secems likely that this G-protein is of the G, type
since it is toxin insensitive and associated with a
phospholipase C linked receptor. The product of
the growth-promoting ras-protein has been pro-
posed to be a PLC coupled G-protein [24]. It is an
intriguing possibility that the G-protein involved in
CD3/T-cell receptor signalling may be similar to
p21ras'
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