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Detection of a proteolytic activity in the micrococcal nuclease used 
for preparation of messenger-dependent reticulocyte lysates 
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Some, but not all, commercial preparations of micrococcal nuclease used to remove endogenous mRNA from reticulo- 
cyte lysates were found to contain proteolytic activity. The protease(s) caused a time-dependent cleavage of the polypro- 
tein primary translation products of genome RNA of several plant viruses, but did not affect the translation products 
of some other virus mRNA. The activity resulted in the production of smaller proteins and was inhibited by zinc ions. 
Thus the protease(s) mimicked virus-coded proteases and represents a potential artifact in studies of translation products 

of virus RNA. 

Tomato black ring virus; Translation, in vitro; Proteolytic processing; Micrococcal nuclease 

1. I N T R O D U C T I O N  

One  o f  the  express ion  s trategies  o f  posi t ive  
s t r a n d e d  vi ra l  R N A s  is in the  t r ans l a t i on  o f  
g e n o m e  R N A  to  yield a large p o l y p r o t e i n  which is 
subsequen t ly  c leaved by  a v i rus -coded  p ro tease  to  
give func t iona l  p roduc t s  [1]. R a b b i t  re t icu locyte  
lysates  have  been  used in m a n y  studies o f  in v i t ro  
t r a n s l a t i o n  o f  m R N A s  and  in the  analys is  o f  the  
p a t h w a y  o f  the  p ro teo ly t i c  process ing  o f  the  
p r i m a r y  t r ans l a t i on  p roduc t s .  P e l h a m  and  J a c k s o n  
[2] showed  tha t  t r e a tmen t  o f  re.ticulocyte lysates by  
mic rococca i  nuclease  des t roys  the  endogenous  
R N A  and  mos t  worke r s  have used  such t rea ted  
re t i cu locy te  lysates.  

E a c h  R N A  o f  t o m a t o  b l ack  r ing virus  (TBRV),  
a nepov i rus ,  is a monoc i s t ron i c  R N A  and  the 
t r a n s l a t i o n  p roduc t s  mus t  be c leaved to  give rise to  
s t ruc tu ra l  and  non- s t ruc tu ra l  p ro te ins  [3,4]. In  our  
t r a n s l a t i o n  s tudies  we have  used nuc lease - t rea ted  
lysates ,  bu t  surpr i s ing ly  the  pa t t e rns  o f  the  p ro -  
te ins  synthes ized af te r  longer  i ncuba t ion  per iods  in 
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t r ea t ed  re t iculocyte  lysates d i f fe red  with  the  source  
o f  mic rococca l  nuclease  used in the  t r ea tmen t .  

This  pape r  repor t s  results  tha t  show tha t  some 
p r e p a r a t i o n s  o f  nuclease  con ta in  s ignif icant  p ro-  
tease  act ivi ty.  

2. M A T E R I A L S  A N D  M E T H O D S  

2.1. Virus and RNA 
The TBRV is an isolate from Lanarkshire and belongs to the 

Scottish serotype. RNA was extracted as described [5]. GCMV 
is the Hungarian grapevine chrome mosaic virus [6]. GCMV 
RNA was provided by T. Candresse (INRA, Pont de la Maye, 
France). 

RNAs of TMV (tobacco mosaic virus), TYMV (turnip yellow 
mosaic virus) and A1MV (alfalfa mosaic virus) were a generous 
gift from M. Pinck (IBMP, Strasbourg). RNAs from BNYVV 
(beet necrotic yellow vein virus) FI 3 isolate [7] were provided by 
K. Richards (IBMP). 

2.2. Micrococcal nuclease 
Sources of micrococcal nuclease were from Boehringer (B), 

Sigma (S) and Worthington (W). Several batches of S and W 
nuclease were tested. 

2.3. In vitro protein synthesis conditions 
Rabbit reticulocyte lysates were purchased from Green Hec- 

tares (Oregon, Wisconsin) and made RNA dependent using the 
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calcium chloride micrococcal nuclease treatment [2]. The 
lysates supplemented with 25/zM hemin were incubated at 20°C 
after addition of 10/zg/ml micrococcal nuclease and 1.25 mM 
CaCl2. After 15 rain, the activity of the nuclease was stopped 
by addition of 4 mM EGTA and by rapid cooling. Translation 
mixtures contained 53 % of treated reticulocyte lysates and were 
adjusted to a final concentration of 15 mM Hepes, pH 7.5, 
l0 mM creatine phosphate, 54/zg/ml creatine kinase, 120 mM 
KAc, 0.4 mM MgCI2, 2 mM DTT, 80/~g/ml of calf liver tRNA, 
l l0 /zM of each of the 19 unlabelled amino acids, 
18.5-37 MBq/ml of [35S]methionine and 50-100/zg/ml of 
viral RNA. 

Neither CaC12 nor EGTA was added when the RNA was 
translated in untreated reticulocyte lysates except when 
specifically mentioned. All incubations were performed at 
30°C. Samples were analyzed by polyacrylamide gel elec- 
trophoresis as described [8]. 

3. RESULTS 

3.1. Stability o f  TBR V RNA-2 translation 
products in reticulocyte lysates 

In a previous paper we showed that TBRV 

RNA-2 induces the synthesis of  a 150 kDa protein 
(corresponding to its entire coding capacity) when 
incubated in a reticulocyte lysate [8]. Here we 
studied the kinetic of  synthesis of  this protein when 
the RNA was incubated either in untreated 
(fig.lA,a) or in micrococcal nuclease-treated 
reticulocyte lysates (fig. 1A,b,c,d). The synthesis of  
the 150 kDa protein always reached a maximal 
yield after 1 h of  incubation, but seemed to be 
degraded upon longer incubation periods. The 
most extensive degradation of the 150 kDa protein 
was observed in S nuclease-treated lysates in which 
a prominent 50 kDa protein, lesser amounts of  
38-40 kDa proteins (these proteins are not re- 
solved on all gels and will be called 40 kDa pro- 
teins hereafter), and a protein of  about 100 kDa 
appeared after 1-5 h. The translation pattern of  
TBRV RNA-2 in B nuclease-treated lysates 
resembles the one obtained in S nuclease-treated 
lysates, although less of  the smaller Mr proteins 

A B 

b c d a c 

5 5 5 5  1 5 1 5  

Fig. 1. Kinetics of appearance of [35S]methionine labelled products of TBRV (A) or GCMV (B) RNA-2 in reticulocyte lysates. Aliquots 
(8/zl) were withdrawn from the reaction mixture at the times indicated (h) and analyzed by electrophoresis on an 8% polyacrylamide 
gel. RNAs were incubated in an untreated reticulocyte lysate (a), or in a lysate pretreated with 10/~g/ml micrococcal nuclease from 

Worthington (b), Sigma (c) or with 5, l0 and 20 ,ug/ml nuclease, respectively, from Boehringer (d). 
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were obtained. Similar patterns were obtained by 
using 2-3  times higher concentrations of  B as S 
nuclease (fig.lA,d). However, doubling the con- 
centrations of  W nuclease did not result in in- 
creased production of  small proteins (not shown). 

GCMV-Iike TBRV is a nepovirus and both 
RNAs of  this virus have been sequenced (Can- 
dresse, T. and Le Gall, O., personal communica- 
tion). GCMV RNA-2 codes for a 148 kDa protein. 
This protein shares 60°7o of  its amino acid sequence 
with the TBRV RNA-2 150 kDa encoded protein. 
Fig. lB shows that the 148 kDa polyprotein of  
GCMV is susceptible to the proteolytic activity of  
S nuclease and proteins of  59, 48 and 42 kDa ap- 
peared. 

Fig.2. Time course of TBRV RNA-2 products in untreated 
reticulocyte lysates. (A) Micrococcal nuclease (5 ~ug/ml) from 
Sigma and EGTA (3 mM) were added to the medium at time 0. 
(B) Translation of TBRV RNA-2 started in an untreated 
reticulocyte lysate. After 45 min samples were divided in 2 
aliquots and were further incubated in normal conditions ( - )  
or supplemented with S micrococcal nuclease (5/zg/ml) and 

unlabelled methionine (3 mM) (+). 

3.2. Evidence for a proteolytic activity present in 
the micrococcal nuclease 

A possible explanation for the appearance of  the 
100, 50 and 40 kDa proteins, in treated lysates pro- 
grammed with TBRV RNA-2, is that a residual 
nuclease activity is able to produce RNA fragments 
which could be translated into small proteins. 
However, omission of  the CaC12 during the treat- 
ment of  the lysate by S nuclease, which resulted in 
no degradation of  endogenous mRNAs, as shown 

A B C D 

Fig.3. Comparison of translation products of TMV (A), BNYVV (B), A1MV (C) and TYMV (D) RNAs in an untreated reticulocyte 
lysate ( - ) or supplemented with S micrococcal nuclease (5/zg/ml) and unlabelled methionine (3 mM) after 45 min of incubation ( + ). 
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by efficient translation of globin (fig.2A), did not 
diminish the formation of the 100, 50 and 40 kDa 
proteins. 

In a second experiment translation of RNA-2 
was started in an untreated lysate and nuclease was 
added after 45 min when the 150 kDa protein was 
already synthesized. At the same time the medium 
was supplemented with a 2000-fold excess of 
unlabelled methionine to prevent labelling of new- 
ly synthesized proteins. Therefore, the small pro- 
teins which appeared soon after the addition of the 
nuclease, and which increased in abundance during 
further incubation (fig.2B), arose by cleavage of 
the 150 kDa protein and were not newly syn- 
thesized. 

Similar experiments were carried out with TBRV 
RNA-1 and GCMV RNA-I which both encode a 
protein of 250 kDa ([3], and Candresse, T. and Le 
Gall, O., personal communication). These proteins 
are translated in the reticulocyte lysate during the 
first hour of incubation, then proteins of lower Mr 
appeared in the lysates whether S nuclease was 
added or not. But additional proteins also occur- 
red in the lysates supplemented with S nuclease 
(not shown). 

respectively, described in [12] are not degraded 
after addition of the nuclease although a faint 
band of approximately 60 kDa did appear, 
presumably by cleavage of the 126 or 90 kDa pro- 
tein; however, no evident counterpart to these pro- 
teins was detected (fig.3). With TYMV RNA in 
both incubation conditions we found the 200 kDa 
protein corresponding to translation of the largest 
ORF, as well as the 150 and 120 kDa proteins 
which could be generated by cleavage of the 
200 kDa protein [13]; also an approximately 
40 kDa protein is produced together with the 
120 kDa protein. Surprisingly no protein of about 
78 kDa described earlier as the counterpart (to the 
200 kDa) of the 120 kDa protein was visible in the 
lysates when no nuclease was added. Again, other 
translation products differed when nuclease was 
added in the incubation medium and especially 
proteins of Mr of about 20, 60, 75 and 80 kDa 
(fig.3) were produced after addition of S nuclease. 

3.3. Behaviour of other viral proteins in the 
nuclease-treated reticulocyte lysate 

According to the literature many viral RNAs 
have been translated in treated reticulocyte systems 
[9], but the appearance of undesired proteins was 
never pointed out. Since the source of nuclease 
used was generally not indicated, we could not 
decide if the sensitivity of translation products of 
TBRV and GCMV RNAs towards the 'nuclease' 
was peculiar to these particular polyproteins or if 
unfortunately we were the only ones to use S 
nuclease. 

Therefore we compared the translation patterns 
obtained with different viral RNAs in lysates con- 
taining nuclease or not, with those already publish- 
ed. Fig.3 shows that the Mr of the proteins 
synthesized by TMV RNA (183-126 kDa) and the 
BNYVV RNA-1 (220-150kDa) and RNA-2 
(85-22 kDa) were in agreement with those 
reported [7,10,11], and that the proteins were 
largely undegraded during 5 h of incubation, no 
new bands were produced in the presence or 
absence of nuclease. Also the four proteins of 126, 
90, 32 and 24 kDa induced by RNA-1-4 of AIMV, 

Fig.4. Translation of TBRV RNA-2 in untreated reticulocyte 
lysates; control samples (-), addition of S micrococcal 
nuclease (5/~g/ml) at 45 min (+), addition of ZnClz (2 mM) at 

20 min (Zn). 
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3.4. Attempts to inhibit proteolytic cleavage 
Zinc ions are able to inhibit viral protease activi- 

ty [14-16]. Therefore we examined the effect of 
Zn 2+ on the proteolytic activity of the S nuclease. 

Fig.4 shows that the presence of 2 mM ZnCI2 in 
the translation mixture prevents cleavage of the 
150 kDa protein into the 100 and 50 kDa proteins 
produced by addition of S nuclease in the medium. 

• 4. DISCUSSION 

Translation products of several virus mRNA 
were slightly degraded when incubated for more 
than 1 h in reticulocyte lysates; this may be due to 
diverse protease activities shown to be contained in 
reticulocyte lysates [17]. However, in addition to 
this degradation we detected a more 'specific' ac- 
tivity attributable to the micrococcal nuclease used 
to render the lysates mRNA dependent. This ac- 
tivity resembled a virus-coded protease, in that 
cleavages occurred in a limited number and only 
when the largest proteins were almost made, and 
that these were inhibited by the presence of Zn 2+ 
in the medium. 

Surprisingly among the translation products 
studied, the polyproteins translated from the 
RNAs of TYMV, TBRV and GCMV which 
undergo processing by a virus-coded protease 
([3,13] and Candresse, T. and Le Gall, O., per- 
sonal communication), were the most sensitive 
towards the proteolytic activity of the S or B 
micrococcal nuclease. Proteins encoded by A1MV 
RNAs were only slightly sensitive and those of 
TMV and BNYVV RNAs remained uncleaved. We 
do not know if this is pure coincidence, or if the 
regions accessible to the proteolytic activity of the 
nuclease and to the viral protease share similar 
features. Of course further sensitive polyproteins 
should be analyzed, and the cleaved proteins have 
to be localized within the polyproteins from which 
they originate, to define possible common 
characteristics of the regions concerned with the 
cleavage. 

In conclusion, it is worth underlining that any 
cleavage of a viral polyprotein in an in vitro pro- 
tein synthesizing system must be regarded with 
precaution before it can be ascribed to a virus- 
coded protease. 
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