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The three-dimensional structure of the E-64-c-papain complex has been determined by X-ray crystal analysis at 2.5 A 
resolution (conventional R = 26.9%). The structure determined indicates that: (i) the C2 atom of the oxirane ring of E-64-c 
is covalently bound by the SY atom of Cys-25 of papain; (ii) this covalent bond formation results in a configurational 
conversion of the oxirane C2 atom from the 9 to the R-form; and (iii) extensive hydrogen bonding and hydrophobic 

interactions are responsible for the specific interaction of the E-64-c molecule with papain. 
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1. INTRODUCTION 

Proteases are important in the initiation, 
maintenance and termination of a wide variety of 
biological processes [l-3]. In view of the pivotal 
role of proteolysis in these processes, the develop- 
ment of specific and non-toxic protease inhibitors 
is an interesting challenge in drug design. 

Thiol proteases, such as papain, cathepsin and 
Ca’+-activated neutral protease, possess an essen- 
tial, highly reactive thiol group at their active sites. 

E-64-c [( +)-(2&3s)-3-(l-[N-(3_methylbutyl)a- 
mino]leucylcarbonyl)oxirane 2-carboxylic acid] (1) 
is the active form of loxistatin (2), a potent cysteine 
protease inhibitor [4]. Loxistatin was designed as a 
clinically usable drug for the treatment of mus- 
cular dystrophy [5], based on the prototype E-64 
(3), a natural product isolated from cultures of 
Aspergillus juponicus [6,7]. The chemical struc- 
tures of l-3 are shown in fig.1. 
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To facilitate the design of more potent and 
useful protease inhibitors, it is desirable to 
establish the mode of binding of existing inhibitors 
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Fig. 1. Chemical structures of E-64-c (l), loxistatin (2) and E-64 

(3). 
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to proteases. Here, we report the mode of binding 

of E-64-c in the E-64-c-papain complex as deter- 
mined by X-ray crystal analysis at 2.5 A 
resolution. 

2. EXPERIMENTAL 

Twice-crystallized papain was prepared by the method of 
Kimmel and Smith [S] from the protease (from Sigma) and fur- 
ther purified as described by Sluyterman and Wijdenes [9]. The 
purified enzyme (9.1 mg/ml) in a solution containing 10% 
dimethyl sulfoxide, 0.1 M KCl, 50 mM cysteine and 10 mM 
EDTA (pH adjusted to 7.0) was treated with a 5 molar excess 
of E-64-c (dissolved in a minimal amount of dimethyl sulfox- 
ide). This treatment led to complete inhibition of the enzyme, 
as confirmed by assaying caseinolytic activity according to stan- 
dard methods [6,10]. The inhibited enzyme was thoroughly 
dialyzed against water. 

For crystallization, the inhibited enzyme (E-6Cc-papain 
complex) was dissolved to a concentration of 1.5% (w/v) in 
0.1 M @aminoethanol hydrochloride buffer (pH 9.2) contain- 
ing 64% methanol-ethanol (2 : 1, v/v). Crystals of the complex 
were obtained within a few weeks using the sitting-drop method 
in a temperature-controlled room (20°C). 

The crystals were mounted on a goniometer in the usual way 
with a small amount of mother liquid. X-ray diffraction data 
were collected to 1.9 A resolution on a Rigaku AFC automatic 
diffractometer in an w scan with Ni-filtered CuKa radiation. 
Data were treated employing corrections for Lorentzian, 
polarization and absorption effects. 

The crystals were orthorhombic and belonged to space group 
P2,2,2r. The unit-cell parameters are as follows: u = 
42.90(l) A, b = 95.51(4) A, c = 49.99(2)& I/ = 2.048 x 
105(1) A3 and Z = 4. 

A total of 6962 reflections to a resolution limit of 2.5 A were 
first used for the structure solution. The structure was solved by 
molecular replacement techniques using the atomic coordinates 
of 2-hydroxyethylthiopapain refined with 2.0 A resolution data 
[l 1] as the starting structure. Several cycles were further refined 
by a stereochemically restrained least-squares procedure using 
the PROLSQ program [12]. Details of the analysis will be 
reported elsewhere. 

3. RESULTS AND DISCUSSION 

Atom fittings were carried out using the 
FRODO program [13,14] on an IRIS 3000 interac- 
tive computer graphics system. The E-64-c 
molecule could be easily identified on a (2F, - Fc) 
map. A stereoscopic view of the partial electron 
density map is shown in fig.2, where the map cor- 
responds to a conventional R value of 0.269 using 
6430 reflections above the 3u (F,,) threshold. As 
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demonstrated in fig.2, a clear-cut density map for 
the E-64-c molecule emerged. This map shows a 
well-defined continuous chain of positive density 
running from the catalytic site near Ser-24 right 
through the active-site groove and terminating in 
the vicinity of the Tyr-67 and Val-157 residues. A 
similar mode of binding has also been observed in 
the crystal structure of the papain-benzyloxy- 
carbonyl-L-phenylalanyl-L-alanine chloromethyl 
ketone complex [ 15 J. Fig.2 undoubtedly indicates 
that a covalent bond was formed between the C2 
carbon atom of the E-64-c oxirane ring and the Sr 
atom of Cys-25 of the papain active site; the C2-S’ 
bond length was 1.87 A. The entire conformation 
of the E-64-c molecule is best described as a flat- 
tened, slightly curved structure. Similar conforma- 
tions have also been observed for the crystal 
structures of the loxistatin [16] and E-64 (Yama- 
moto, D. et al., unpublished) molecules them- 
selves. 

It is of interest that the configurational conver- 
sion took place at the C2 atom of the E-64-c ox- 
irane ring, as shown in fig.3. The S configuration 
of the E-64-c molecule itself was converted to the 
R form by covalent bond formation with the Sy 
atom of Cys-25. This implies that nucleophilic at- 
tack of the Cys-25 SH group occurs at the opposite 
side to the 0 atom of the oxirane ring plane, and 
attack from the same side causes electronic repul- 
sion between the lone pairs of the Cys-25 Sy and 
oxirane 0 atoms. This configurational conversion 
has also been demonstrated by t3C-NMR spec- 
troscopy [17]. 

A perspective view showing the possible interac- 
tions of E-64-c with the papain active site is shown 
in fig.4. The formation of seven hydrogen bonds 
was observed at the present refinement of the 
crystal structure. The N” (Gln-19), NJ’ (His-159), 
N and 0 (Gly-66) and 0 (Asp-158) atoms par- 
ticipated in the formation of hydrogen bonds with 
the polar N and 0 atoms of E-64-c. The bond 
lengths (2.60-3.10 A) are in a reasonable range. 
On the other hand, the 3-methylbutyl and leucyl 
side chains of E-64-c were stabilized by 
hydrophobic interactions with the neighboring 
Tyrdl and -67, and Val-133, -157 and Asp-158 
residues, respectively, as can be seen in fig.4. 

Structure refinement using reflections to a 
resolution of 1.9 A is now in progress. 
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Fig.2. Stereoscopic view of fragment of an electron density contour map which corresponds to the binding of the E-64-c molecule (thick 
lines) to the active site of papain. Some nearest-neighbor amino acid residues are also shown by the stick bonds. The 3-methylbutyl 
terminal of E-64-c had relatively large thermal motions, and the corresponding contour is not shown at this electron density level. 

p” 

Cys25-SH in Papain 

dys-25 

Fig.3. Configurational conversion around the C2 atom of the 
E-64-c oxirane ring caused by covalent bond formation with the 

Sy atom of the Cys-25 residue of the active site of papain. 

Tyr-61 

Fig.4. Perspective view of the mode of interaction of E-64-c 
with each amino acid residue forming the papain active site. 
Dotted lines represent possible formation of hydrogen bonds. 
The E-64-c molecule is shown in the thermal ellipsoidal style. 
Filled and shaded circles represent oxygen and nitrogen atoms 
of each amino acid residue participating in the hydrogen bond, 

respectively. 
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