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Two physiological substrate-specific casein kinases are present in 
the bovine mammary gland 
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Two species of casein kinase from lactating bovine mammary gland have been identified; a Ca 2+- and CM-independent 
casein kinase and a Ca 2+- and CM-dependent casein kinase. The Ca "+- and CM-indeI~ndent casein kinase phosphory- 
lates previously dephosphorylated a,~-, ,6- or x-casein while the Ca ,+- and CM-dependent casein kinase prefers previously 
dephosphorylated p- or x-casein as substrates. Two activities are indicated by their substrate specificity, sensitivity to 
Ca 2+ and CM, pH maxima, and differential solubilization by anionic detergents. The presence of a regulated casein kinase 
in the lactating mammary gland suggests that casein phosphorylation may be a regulator of miceile formation or secre- 

tion. 

Casein; Protein kinase; Caimodulin; (Bovine) 

1. I N T R O D U C T I O N  

T h e  k inases  r e s p o n s i b l e  f o r  t h e  p h y s i o l o g i c a l  

p h o s p h o r y l a t i o n  o f  b o v i n e  case ins  h a v e  n o t  b e e n  
t h o r o u g h l y  c h a r a c t e r i z e d .  A case in  k inase  t h a t  

p r e f e r s  p r e v i o u s l y  d e p h o s p h o r y l a t e d  subs t r a t e s  has  

b e e n  d e s c r i b e d  a n d  so lub i l i z ed  [ 1 - 4 ] .  A s e c o n d  ca-  

se in  k i n a s e  in l a c t a t i n g  b o v i n e  m a m m a r y  g l a n d  is 
r e g u l a t e d  by  C a  2+ a n d  C M  a n d  p r e f e r s  p r e v i o u s l y  

d e p h o s p h o r y l a t e d  x - c a s e i n  as s u b s t r a t e  [5]. A 

s im i l a r  a c t i v i t y  in t h e  l a c t a t i n g  ra t  m a m m a r y  g l a n d  
has  b e e n  r e p o r t e d  [6]. 

T h e  p u r p o s e  o f  this  w o r k  is to  d i f f e r e n t i a t e  be-  
t w e e n  these  t w o  ac t iv i t i es  in t e r m s  o f  s u b s t r a t e  

spec i f i c i ty ,  e n z y m a t i c  cha rac t e r i s t i c s  a n d  so lub i l i t y  
in v a r i o u s  a n i o n i c  de t e rgen t s .  

2. MATERIALS AND METHODS 

2.1. Materials 
Caseins (asl, ~ and x) were isolated from defatted milk of in- 

dividual cows by DEAE-ceilulose (Whatman DE-52) 
chromatography (pH 6.5) [7] and repurified on DEAE-cellulose 
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at a lower pH (5.0). The caseins appeared homogeneous by 
alkaline-urea acrylamide gel elcctrophoresis [3]. The amino acid 
composition and that determined from sequence data of the 
oral-, •- and x-caseins correlated with values of 0.864, 0.971 and 
0.961, respectively. Caseins were dephosphorylated and assayed 
for phosphate content as described [5]. CM was purified from 
bovine brain by fluphenazine affinity chromatography [6,10]. 

2.2. Methods 
Microsomal membranes were prepared by differential cen- 

trifugation [5] from mammary tissue from Jersey cows in the se- 
cond to fourth weeks of lactation. Protein concentrations were 
determined by the method of Bradford [11]. 

Membranes (I00/~g) were used as the source of casein kinase 
activities and assayed as in [5] using a 100/~l mixture containing 
50 mM Pipes, 10 mM MgCI2, 100/zg casein substrate, 80/zM 
[a2P]ATP (New England Nuclear, Boston, MA) and when ap- 
propriate approx. 1 mM Ca 2+ and 0.9/zM CM. Reaction mix- 
tures were incubated for 15 s at 30°C, and concluded by 
addition of SDS, 2-mercaptoethanol and by heating. The pro- 
ducts were separated by SDS-contalning 12°70 polyacrylamide 
gel electrophoresis and the phosphorylation of the caseins quan- 
tified by either autoradiography or dissolution of the excised 
protein containing gel followed by determination of the incor- 
porated [32Plphosphate. 

Soluhilization of the mammary gland membranes was per- 
formed with 1% detergent in buffer containing 300 mM 
sucrose, 10 mM Tris (pH 7.0), 1 mM EGTA and 10/zg/ml 
aprotinin at room temperature for 1 h with constant agitation. 
The solubilized protein was collected after centrifugation at 4°C 
for 1 h at 148500 × g. 
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3. RESULTS 

3.1. Phosphorylation o f  native and 
dephosphorylated asr, / Y - a n d  x-caseins 
by mammary microsomes 

A greater than 99070 dephosphorylation of 
isolated trsl-,/3- and x-caseins was accomplished by 
incubation with bovine intestinal alkaline phos- 
phatase followed by trichloroacetic acid precipita- 
tion. The acid precipitation eliminated all detect- 
able phosphatase activity. The Ca 2+- and CM- 
dependent casein kinase activity was increased by 
7- and 8-fold, respectively, when dephosphorylat- 
ed rather than native/3- and x,-caseins were used as 
substrates (table 1). Dephosphorylation of Oes~- 
casein did not allow an increase in the Ca z+- and 
CM-dependent casein kinase. A large biological 
variation was observed between preparations from 
cows in early lactation. A Ca 2+- and CM- 
independent casein kinase utilizing dephos- 
phorylated o~sl-, /Y- and x-casein substrates was 
present and appeared to be similar to those ob- 
served [1-41. 

3.2. Characteristics o f  the Ca z+- and CM- 
dependent casein kinase 

The Ca 2+- and CM-dependent casein kinase ac- 
tivity was Mg2+-dependent and required the 
simultaneous presence of Ca 2+ and CM. 
Trifluoperazine reduced the Ca 2+- and CM- 
dependent activity to background but did not in- 
fluence the Ca 2+- and CM-independent activities. 

3.3. Influence of  H + concentration on casein 
kinase activities 

The activity of the Ca 2+- and CM-independent 

Table 1 

Ca z+- and CM-dependent casein kinase activities utilizing 
native and dephosphorylated substrates 

Substrate Activity a (pmol/min per mg) 
(mean ± SD) 

Native as~-casein 43 _+ 37 
Dephosphorylated asj-casein 43 +_ 24 
Native ~-casein 9 + 9 
Dephosphorylated ~-casein 65 +_ 32 
Native x-casein 6 + 7 
Dephosphorylated x-casein 48 :t= 28 

a n = preparations from 3 cows 

casein kinase was observed over a wide pH range 
with maximal activity at 6.6 (fig. 1). The Ca 2+- and 
CM-dependent casein kinases gave maximal activi- 
ty at pH 6.8 while the activity rapidly fell under 
more acidic conditions. The ratios of Ca 2+- and 
CM-independent activities at pH 6.8 and 6.0 were 
1.1, 1.5 and 1.0 for as1-,/Y- and x-caseins respec- 
tively; while the ratios of Ca 2+- and CM-dependent 
activities were 8.9 and 10.4 for/Y- and x-caseins. 

3.4. Solubilization o f  casein kinase activities 
The solubilization of Ca 2+- and CM-dependent 

and -independent casein kinases from bovine 
mammary membranes were markedly different 
and dependent on the detergent (table 2). The 
Ca 2+- and CM-independent casein kinase using 
asl-caseins as substrate was enriched per unit pro- 
tein by 153, 261 and 310070 during the solubiliza- 
tion process by extraction with digitonin, 
octylglucopyranoside or Triton X-100, respective- 
ly. Deoxycholate was less effective. The mem- 
branes had substrate activity ratios of 0.75 (t~sl/L0 
while the ratios for all the detergent-solubilized 
preparations were between 0.72 and 0.77, sug- 
gesting that the activities phosphorylating as1 and 
/3 in a Ca 2+- and CM-independent manner were 
one and the same. 
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Fig. 1. Effect of pH on Ca 2÷- and CM-independent and -depen- 
dent casein kinase activities for various dephosphorylated 
substrates. Data from studies of three animals have been 
normalized and averaged. (o) Ca 2+- and CM-dependent x- 
casein kinase, (#) Ca 2+- and CModependent B-casein kinase, 
(&) Ca z+- and CM-independent x-casein kinase, (e) Ca z+- and 
CM-independent /~-casein kinase and (u) Ca 2+- and CM- 

independent asl-casein kinase. 
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Table 2 

Effects of detergent solubilization on Ca z+- and CM- 
-independent and -dependent casein kinase activities utilizing 

dephosphorytated substrates 

Preparation Ca 2+ and CM Substrate 
dependence 

ast-Casein ~Y-Casein 

Membranes - 52.6 39.4 
+ ND 31.1 

Deoxycholate - 28.4 22.0 
+ ND 0.0 

Triton X-100 - 163.4 121.7 
+ ND 21.3 

Digitonin - 133.4 95.7 
+ ND 32.2 

Octylglucopyranoside - 137.7 104.6 
+ ND 21 .'I 

Results expressed as pmol/min per rag protein; ND, not 
determined 

The solubilization of  Ca 2+- and CM-dependent 
B-casein kinase activity in contrast was less effi- 
cient with any o f  the detergents tested. Only 
digitonin provided a marginal extractive enrich- 
ment of  activity (104070); octylglucopyranoside 
(69070) and Triton X-100 (68070) did not selectively 
solubilize the Ca 2+- and CM-dependent/~-casein 
kinase activity. No Ca z+- and CM-dependent ca- 
sein kinase activity was extracted with deox- 
ycholate. The ratios o f  Ca 2+- and CM-independent 
and -dependent lY-casein kinase activities are 0.79 
for the membrane preparation and 0.34, 0.21 and 
0.18 for digitonin-, octylglucopyranoside- and 
Triton X-100-solubilized preparations, respec- 
tively. 

4. DISCUSSION 

Two distinct casein kinases are present in the lac- 
tating bovine mammary gland as judged by 
substrate specificity, Ca 2+ and CM dependence, 
pH sensitivity and properties of  detergent 
solubilization. Previously, a divalent cation- 
dependent casein kinase has been described [1-4] 
and is most likely the activity we describe as a 
Ca 2+- and CM-independent casein kinase. I 
previously reported a second casein kinase that 
utilizes n-casein as substrate and is Ca 2+- and CM- 

independent [5]. This report compares the 
characteristics o f  the Ca 2+- and CM-independent 
and -dependent casein kinases. 

The removal of  phosphate f rom casein 
phosphoproteins should allow a substantial in- 
crease in phosphorylation during kinase reactions 
if the enzymes phosphorylate the same residues as 
in vivo. Bo th  dephosphorylated/~- and x-caseins 
served as substrates for the Ca 2+- and CM- 
dependent casein kinase having activities 7-8-fold  
higher with dephosphorylated substrates, cnl- 
casein is not a physiological substrate for the Ca 2+- 
and CM-dependent casein kinase activity as as1 
dephosphorylation did not allow an increase in ac- 
tivity. The similar magnitudes of  Ca 2+- and CM- 
independent and -dependent casein kinase ac- 
tivities suggest a physiological role for  each. 

Unique phosphorylation sites for  the Ca 2+- and 
CM-dependent and -independent x,-casein kinase 
activities are difficult to rationalize as sequence 
analysis reveals a single phosphoserine at residue 
149 [9]. Two kinases competing for the same site 
are unlikely but phosphate analysis suggests a 
stoichiometry of  2 mol phosphate per mol x-casein 
[12] suggesting a second phosphorylation site on 
x-casein. 

Both Ca 2+- and CM-dependent and -indepen- 
dent casein kinase activities require divalent ca- 
tions [1-5] while the -dependent casein kinase also 
requires the combination of  Ca 2+ and CM for full 
activity. Others have characterized bovine mam- 
mary casein kinases as being activated by either 
Mg 2+ or Ca 2+ I1,2, l 0]. Perhaps this difference can 
be explained by the lack of  thorough chelation of  
Ca 2+ during the preparation o f  membranes and the 
continued association o f  CM with the casein 
kinase. We use a buffer containing 1 mM EDTA 
to remove divalent cations and prepare membranes 
free of CM. 

Recent work o f  Bingham et al. [13] demon- 
strated that all sites o f  phosphorylation previously 
described by sequence analysis can be phosphor- 
ylated by a Ca +- and CM-independent casein 
kinase preparation. The preparation of  the mem- 
branes was performed in 1 mM EDTA, suggesting 
that the Ca 2+- and CM-dependent enzyme may not 
participate in phosphorylation of  the familiar sites. 
The meaning of  these data needs to be interpreted 
by phosphorylation and mapping experiments 
under conditions where the Ca 2+- and CM- 
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dependent E-casein kinase activity can also be 
determined. 

Data involving enzymatic activity at various H + 
concentrations fall into two patterns that suggest 
the presence of  two casein kinases. The Ca 2+- and 
CM-dependent casein kinase activity (8- and x- 
casein substrates) exhibits a sharp decline in activi- 
ty at pH values below 6.6. In contrast, the Ca 2+- 
and CM-independent casein kinase activity (asl-, 
/~- and x-casein substrates) retain their activities at 
these lower pH values. 

The differential solubilization of  Ca 2+- and CM- 
dependent and -independent casein kinase ac- 
tivities suggests that they reside on unique pro- 
teins. Consistent Ca 2+- and CM-independent 
casein kinase activity ratios (0.72-0.77) using t~sl- 
and B-casein substrates in various detergent- 
solubilized preparations indicate that one enzyme 
can utilize either substrate. The data from the pH 
studies support this interpretation. 

Two physiologically relevant casein kinase ac- 
tivities are present in the lactating bovine mam- 
mary gland. The primary function of  the enzymes 
appears to be to phosphorylate caseins in prepara- 
tion for micelle formation. The presence of  a Ca 2+- 
and CM-regulated casein kinase in the bovine 
mammary gland specific for physiologic sites on ~- 
and x-casein suggests that processes such as micelle 
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formation or intracellular protein routing may be 
regulated features of  the bovine mammary gland. 
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