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Maitotoxin, a potent, general activator of phosphoinositide 
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Maitotoxin (MTX), a potent marine toxin, elicits a calcium-dependent activation of cells that can be inhibited by calcium 
channel blockers like nifedipine. MTX also stimulates phosphoinositide breakdown in smooth muscle cells, NCB-20 cells 
and PC 12 cells through a nifedipine-insensitive mechanism. We now report that MTX stimulates phosphoinositide break- 
down in a wide variety of ceils, and appears to repesent the first general activator of this second messenger-generating 
system. MTX-induced stimulation of phosphoinositide breakdown is dependent in every cell line on the presence of extra- 
cellular calcium. In differentiated HL60 cells, in which a chemotactic peptide (fMLP) activates phosphoinositide break- 
down via a pertussis toxin-sensitive mechanism, MTX-induced stimulation is not affected by pertussis toxin treatment. 
A phorbol ester has no effect on the response to MTX. Thus, MTX stimulates phosphoinositide breakdown through 
a calcium-dependent mechanism that at least in three cell lines (PC12, NCB20 and HL60) is not mediated by a pathway 

that involves a pertussis toxin-sensitive guanine nucleotide-binding protein. 

Maitotoxin; Phosphoinositide breakdown; Ca 2+ channel 

1. I N T R O D U C T I O N  

M a i t o t o x i n  (MTX) ,  i so la ted  f rom the d ino-  
f lage l la te  Gambierdiscus toxicus [1], elicits the  
re lease  o f  neu ro t r ansmi t t e r s  and  h o r m o n e s  f rom 
sec re to ry  cells [2 -5 ] ,  s t imula tes  the  up t ake  o f  
ca lc ium [1 ,2 ,4 -7]  and  induces  the  con t r ac t ion  o f  
s m o o t h  muscle  and  ca rd iac  t issue [6,8,9]. In  every 
case,  the  effects  o f  M T X  are  dependen t  on  the  
presence  o f  ex t race l lu la r  ca lc ium.  In  mos t  cells 
ca l c ium channel  b lockers  inhibi t  the  effects  o f  
M T X  [1,6] and  it has been p r o p o s e d  tha t  M T X  is 
a d i rec t  ac t iva to r  o f  vo l t age -dependen t  ca lc ium 
channe ls  [1]. 

A t  lower  concen t ra t ions  than  those  requi red  to  
elicit  ca lc ium channel  ac t iva t ion ,  M T X  elicits 
p h o s p h o i n o s i t i d e  b r e a k d o w n  in ra t  aor t ic  myo-  
cytes [ 10], n e u r o b l a s t o m a  hyb r id  NCB-20  cells [ 11] 
and  p h e o c h r o m o c y t o m a  PC12 ceils [12]. S t imula-  
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t ion  o f  p h o s p h o i n o s i t i d e  b r e a k d o w n  by  M T X  
de pe nds  on  the presence o f  ex t race l lu la r  ca lc ium 
[11]. However ,  in con t ras t  to  the  effects  o f  M T X  
on vo l t age -dependen t  ca lc ium channels ,  the  s t imu-  
l a t ion  o f  p h o s p h o i n o s i t i d e  b r e a k d o w n  by  M T X  is 
no t  a f fec ted  by  a var ie ty  o f  o rgan ic  and  inorgan ic  
b locke r s  o f  ca lc ium channels  [10-12] .  

W e  now show tha t  M T X  s t imula tes  the  b reak-  
d o w n  o f  phospho inos i t i de s  in a wide var ie ty  o f  
cells and  in b ra in  s y n a p t o n e u r o s o m e s ,  as assessed 
by  the  a c c u m u l a t i o n  o f  [3H]inosi tol  m o n o - ,  bis- 
a n d  t r i sphospha tes .  The  response  is insensi t ive to  
per tuss is  tox in  or  p h o r b o l  esters.  

2. M A T E R I A L S  A N D  M E T H O D S  

2.1. Cells 
Cells were generously provided as follows: NCB-20, Dr D.M. 

Chuang (NIMH, Washington, DC); C6 rat glioma, Dr P. 
Fishman (NINCDS, Bethesda, MD); P2E rabbit kidney cell 
line, Dr L. Arendt (Michigan State University, East Lansing, 
MI); L fibroblasts, Dr P. Torrence (NIDDK, Bethesda); 
RBL2H3, Dr M. Beaven (NHLBI, Bethesda); PC12 pheo- 
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Table 1 

Maitotoxin (MTX)-induced stimulation of  phosphoinositide breakdown in cultured cell 
lines and guinea pig synaptoneurosomes 

Cell or tissue [Ca 2+] 
(mM) 

cpm/10000 cpm in lipids 

[3H]IPI [3H]IP2 [3H]IP3 

NCB-20 neuroblastoma hybrid 
Control 
MTX 

C6 rat glioma cells 
Control 
MTX 

P2E kidney cells 
Control 
MTX 

4.5 

4.5 

4.5 

L fibroblasts 1.5 

Control 

MTX 

RBL2H3 basophils 4.5 
Control 
MTX 

PCI2 pheochromocytoma cells 
Control 
MTX 

HL60 human leukemic cells 
Control 
MTX 

Mouse pituitary cells 
Control 
MTX 

Guinea pig synaptoneurosomes 
Control 
MTX 

1.5 

1.5 

1.5 

280+ 95 50-+ 15 120-+ 50 
2160 :l: 200 280 -+ 60 300 -+ 50 

(780070) (590070) (25007o) 

290+ 160 90-+ I0 130+ 20 
2820 -+ 470 350 -+ 50 300 -+ 20 

(980%) (410070) (230070) 

710_+ 110 110 + 10 140+ 10 
1600± 140 2 8 0 +  40 280_+ 20 

(220070) (250070) (200070) 

1420 -+ 80 260 + 60 270 -+ 60 
4350 _+ 620 1100 -+ 200 1290 + 200 

(310070) (430°70) (480%) 

600-+100 140-+ 30 200-+ 20 
1230 -+ 340 170 -+ 5 200 -+ 5 

(200070) (120070) (100070) 

330+  50 40_+ 5 60_+ 5 
1660+ 5 190+ 30 160+ 20 

(510070) (450070) (260070) 

960_+ 60 170_+ 30 2 3 0 +  30 
3350 -+ 340 1120 + 100 310 -+ 20 

(350070) (670°70) (130°7o) 

260 + 40 80,80 470,380 
770 _+ 150 1080,310 710,340 
(30O070) 

720 _+ 80 
1300 + 250 

(180070) 

Cells were labelled with [3H]inositol (10/zCi/ml) for 12-16 h in multiwell plates (36 h for 
HL60 cells), while synaptoneurosomes were labelled for 60 min (see [15] for details). After 
washing, cells or synaptoneurosomes were exposed to MTX (0.5 ng/ml) for 30 min at 
37°C. Incubations were stopped by aspirating the buffer and adding 1 ml of  607o 
trichloroacetic acid. [3H]lnositol phosphates were anayzed by anion-exchange 
chromatography as described [15]. For HL60 cells the method of  Brandt et al. [14] was 
followed. The Ca 2+ concentration was that which allowed for maximal stimulation of  
phosphoinositide breakdown in each cell. Values in parentheses are percent of  respective 

control 
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chromocytoma, Dr G. Guroff (NINCDS, Bethesda); HL60, Dr 
J. Gutkind (NIDR, Bethesda); mouse anterior pituitary primary 
cultures, Dr M.G. Castro (NICHD, Bethesda). 

2.2. Cell culture 
Culture media for cells were as follows: NCB-20 and L 

fibroblasts, Dulbecco's modified Eagle's medium (DMEM) 
with 10070 fetal calf serum (FCS) and penicillin (100 U/ml) and 
streptomycin (100/~g/ml); C6 rat glioma cells, DMEM with 5070 
FCS; P2E cells, DMEM with 10070 FCS and 1 ,aM dexame- 
thasone; RBL2H3, Eagle's medium with Earle's salts and with 
15070 FCS; PCI2 cells, DMEM with 6070 fetal calf serum, 6070 
horse serum and penicillin (100U/ml) and streptomycin 
(100/~g/ml); HL60 cells, RPMI 1640 with 10070 FCS; mouse 
anterior pituitary cells, DMEM with 10070 FCS. 

2.3. Phosphoinositide breakdown 
Experiments in NCB-20, C6 glioma, P2E cells, L fibroblasts, 

RBL2H3, PC 12 cells and mouse anterior pituitary cultures were 
determined as described [11]. Briefly, on the day before the ex- 
periment, cells were transferred from 150-cm 2 culture flasks 
and subcultured in 12-well dishes with medium containing 
10/~Ci/ml [3H]inositol (14-17 Ci/mmoi). [3H]Inositol-labelled 
cells were washed twice with buffer A (118 mM NaC1, 4.7 mM 
KCI, 3 mM CaC12, 1.2 mM MgSO4, 1.2 mM KH2PO4, 0.5 mM 
EDTA, 10 mM glucose, 20 mM Hepes; pH 7.4). Cells were 
then incubated in buffer A, containing 60 mM LiCI (osmolarity 
maintained by reducing NaCI to 58 mM), for 20 rain. Agents 
were then added and incubations continued for 30 min at 37°C. 
Cells were scraped from the plates and transferred to 1.5-ml 
microfuge tubes. After centrifugation for 1 min the supernatant 
was discarded and 1 ml of 6070 trichloroacetic acid was added. 
The tubes were vortex-mixed, centrifuged for 1.5 min and the 
supernatant was applied to anion-exchange columns (Bio Rad 
AG IXS, 100-200 mesh, formate form). Separation and elution 
of [3H]inositol phosphates by anion-exchange chromatography 
was performed as described by Berridge et al. [13]. For HL60 
cells, the labeling, washing and phosphoinositide breakdown 
procedure was as described by Brandt et al. [14]. For guinea pig 
synaptonenrosomes our described procedure was followed [15]. 

2.4. Materials 
Maitotoxin was purified to homogeneity from G. toxicus as 

in [1]. [3H]Inositol (12-17 Ci/mmol) was obtained from Du- 
pont, NEN (Boston, MA); pertussis toxin (IAP) from List 
Biological (Campbell, CA); formylmethionylleucylphenyl- 
alanine (fMLP) and phorbol 12-myristate 13-acetate (PMA) 
from Sigma (St. Louis, MO); ionomycin and A23187 from 
Calbiochem (La Jolla, CA); and culture media and sera from 
Gibco (Grand Island, NY). 

3. RESULTS 

In every cell line and in synaptoneurosomes, 
MTX-elicited stimulation of phosphoinositide 
breakdown is eliminated when the incubation 
medium lacks calcium ([11,12] and not shown). 
Results were similar in media containing 10 mM 
LiCl (not shown). MTX-elicited stimulation of 

phosphoinositide breakdown increases with in- 
creasing extracellular calcium concentrations ([12] 
and not shown). The requirement of calcium for 
MTX action varies from cell to cell ([12] and not 
shown). There seem to be two different groups in 
terms of calcium threshold for MTX activity. In 
one group (PC12, P2E, L fibroblasts, RBL, HL60 
and mouse pituitary), MTX stimulation of phos- 
phoinositide breakdown can be observed at cal- 
cium concentrations as low as 50-100/LM. In the 
other group (NCB20, C6, synaptoneurosomes) 
MTX action can only be detected at calcium con- 
centrations of 1-1.5 mM and higher. As previous- 
ly noted for NCB-20 and PC12 cells [12], the 
concentration of extracellular calcium at which 
maximal MTX-elicited stimulation of phosphoino- 
sitide breakdown occurs differs markedly in diffe- 
rent cell lines: The percent stimulation of 
formation of [3H]inositol phosphates listed in table 
1 corresponds in each case to the maximal stimula- 
tion by MTX at the calcium concentration that is 
optimal for each cell line. In most cell lines calcium 
concentrations ___9 mM result in a reduction of 
MTX-stimulated phosphoinositide breakdown 
(not shown). But in a rat glioma cell line ((26) and 

NCB-20  
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o 
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Fig.l. Effect of combination of maitotoxin and receptor 
agonists on phosphoinositide breakdown. NCB-20 cells 
differentiated with sodium butyrate for 3 days and HL60 cells 
differentiated with dibutyryl cyclic AMP for 36 h were labelled 
with [3H]inositol as described [14]. Cells then were washed and 
incubated with carbamylcholine (CaCh, 1 mM), maitotoxin 
(MTX, 0.5 ng/ml), or fMLP (1/~M) alone or in combination 
for 30 min. [3H]Inositol monophosphate was analyzed as in 
[14]. Values are from three or more experiments performed in 
triplicate. Values are expressed as percent of respective 

controls. 
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in guinea pig cerebral cortical synaptoneurosomes 
no reduction of  MTX-mediated stimulation of  
phosphoinositide breakdown occurs even with 
9.5 mM calcium. The calcium ionophores iono- 
mycin (1/~M) and A23187 (1/~M) have no or 
minimal effects on [3Hlinositol phosphate forma- 
tion in NCB-20 or PC12 cells (not shown), while 

Table 2 

Effects of pertussis toxin and phorbol esters on 
phosphoinositide breakdown 

(A) Effects of pretreatment with pertussis toxin on MTX and 
fMLP stimulation of phosphoinositide breakdown in HL60 
cells a 

Saline Pertussis toxin 
(cpm in [3Hlinositol 

monophosphate fraction) 

Control 930 + 70 770 _+ 110 

fMLP (1 #M) 3130 _+ 230 1660 + 430 
(340°70) (220070) 

MTX (0.5 ng/ml) 3650 + 310 3470 + 410 
(390070) (450070) 

(B) Lack of effect of pertussis toxin and phorbol diacetate on 
MTX-induced stimulation of phosphoinositide breakdown 
in NCB-20, PC12 and C6 cells b 

Pertussis Phorbol 
toxin c diacetate d 

(070 of response to MTX alone) 

NCB-20 neuroblastoma 
hybrid 100 120,90 

PC12 pheochromocytoma 90 100 
C6 glioma 90 ND 

" HL60 cells were differentiated and labelled with [3H]inositol 
as described [14]. Cells were pretreated with saline or pertussis 
toxin (100 ng/ml) for 2 h at 37°C. Cells were then washed 
and treated with fMLP or MTX as indicated for 30 min at 
37°C and [3H]inositol phosphates were analyzed as in [14]. 
Results are averages of three experiments performed in 
triplicate. Values in parentheses are percent of respective 
control 

b Cells were labelled with [aH]inositol for 14-16 h. After 
washing cells were incubated with MTX (0.5 ng/ml) for 
30rain and [3H]inositol phosphates were analyzed as 
described [14]. Results are expressed as percentage of 
response obtained in the absence of pertussis toxin 
pretreatment or incubation with phorbol diacetate. Values are 
from single experiments performed in triplicate 

c Pertussis toxin (100 ng/ml) was present during the 14-16 h 
labeling with laH]inositol 

d Phorbol diacetate (1/~M) was present during incubation with 
MTX 

MTX elicits about 8- and 5-fold stimulation in 
these two cell lines, respectively (table 1). 

Combination of  carbamylcholine with MTX in 
differentiated NCB-20 cells or of  fMLP with MTX 
in differentiated HL60 cells results in formations 
of  [3H]inositol phosphates that are additive or 
somewhat less than additive, respectively, to the 
responses obtained with MTX and receptor ago- 
nists alone (fig. 1). 

Pretreatment with pertussis toxin reduces 
fMLP-mediated stimulation by about 50o7o, but 
has no effect on MTX-elicited stimulation of  
phosphoinositide breakdown in differentiated 
HL60 cells (table 2). Pertussis toxin-pretreatment 
also does not affect significantly MTX-elicited 
phosphoinositide breakdown in NCB-20 or PC12 
cells (table 2). A protein kinase C activator, phor- 
bol diacetate, which in some systems can inhibit 
receptor-mediated (see [16]) and NaF-mediated 
[17] stimulation of  phosphoinositide breakdown, 
does not affect MTX-elicited stimulation in 
NCB-20 or PC12 cells (table 2). 

4. DISCUSSION 

MTX appears to be a general activator of  
phosphoinositide breakdown having elicited a 
marked calcium-dependent accumulation of  
[3H]inositol phosphates in all cell lines as yet 
studied (table 1). Both the threshold concentration 
of  calcium at which MTX first elicits accumulation 
of  [3H]inositol phosphates (see section 3) and the 
concentration of  calcium at which a maximal 
response to maitotoxin occurs (table 1) differ in 
different cell lines. In every cell studied, the 
absence of  extracellular calcium eliminates MTX 
responses. 

In the differentiated NCB-20 cells, muscarinic 
stimulation of  phosphoinositide breakdown occurs 
in the absence of  extracellular calcium, whereas 
MTX stimulated measurable formation of  [3H]- 
inositol phosphates only at calcium concentrations 
_> 1.5 mM (not shown). Thus, extracellular cal- 
cium is a requirement for MTX-mediated, but not 
receptor-mediated responses. In this cell line, 
however, the calcium ionophores ionomycin and 
A23187 (1/~M) cause only a slight increase in 
[3H]inositol phosphate formation (not shown) at 
the calcium concentration at which MTX induces 
the response indicated in table 1. Thus, MTX 
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clearly must act in a manner different from 
calcium ionophores. Previous data on calcium in- 
flux in liposomes indicated no ionophore activity 
for MTX [18]. 

Calcium could be required for MTX binding to 
an effector site, or alternatively, MTX-elicited 
stimulation of phosphoinositide breakdown could 
be  elicited through a calcium uptake mechanism 
that is activated by MTX. If so, such an uptake 
mechanism must be present in all cells as yet 
studied, and must be insensitive to blockade by 
calcium channel blockers as shown in studies with 
NCB-20, PC12 cells and aortic myocytes [10-12. 

NCB-20 cells after treatment with sodium 
butyrate express a muscarinic receptor coupled to 
phospholipase C [19l. The HL60 human leukemic 
cells after differentiation with dibutyryl cyclic 
AMP express a chemotactic peptide (fMLP) recep- 
tor coupled to phospholipase C [14,20]. Since com- 
binations of MTX with the receptor agonists in 
these cells result in responses that are larger than 
those induced by MTX or agonists alone (fig.l), 
different mechanisms for the action by MTX and 
the receptor agonists appear likely. 

Inhibition of fMLP stimulation of phosphoino- 
sitide breakdown by pertussis toxin indicates that 
a pertussis toxin-sensitive guanine nucleotide- 
binding protein mediates between fMLP receptor 
and phospholipase C activation in HL60 cells 
([14], see also [16]). The lack of effect of pertussis 
toxin on responses to MTX in HL60 and other cells 
(table 2) suggests that MTX-elicited stimulation of 
phosphoinositide breakdown is not mediated by a 
receptor coupled to a guanine nucleotide-binding 
protein, although it is conceivable that a different 
G-protein insensitive to pertussis toxin might be in- 
volved in MTX-elicited responses. 

Inhibition of receptor-mediated phosphoino- 
sitide breakdown by phorbol esters has been pro- 
posed to be mediated through phosphorylation of 
guanine nucleotide-binding proteins by protein 
kinase C [17,21]. The lack of effect of phorbol 
esters on MTX-elicited stimulation of phosphoino- 
sitide breakdown (table 2), again in contrast to in- 
hibition of receptor-mediated responses by 
phorbol esters, provides further evidence for a dif- 
ferent transduction mechanism for responses to 
MTX. 

The possibility that MTX could directly activate 
a guanine nucleotide-binding protein involved in 

signal transduction to phospholipase C seems 
unlikely. Thus, guanine nucleotide-binding pro- 
teins involved in phospholipase C activation seem 
to differ between cells; in some systems they are 
pertussis toxin-sensitive and in others they are not. 
Since MTX is a general activator for generation of 
inositol phosphates in all cells as yet tested, then 
one would have to postulate MTX to be a general 
activator of both pertussis toxin-sensitive and 
-insensitive guanine nucleotide-binding proteins. 
MTX does not affect directly other guanine 
nucleotide-binding protein-mediated phenomena, 
like stimulation or inhibition of adenylate cyclase 
(not shown). Thus, MTX is not a general activator 
of the guanine nucleotide-binding proteins. 

It appears probable that activation of phospho- 
lipase C by MTX occurs either directly or by 
making calcium readily available for enzyme acti- 
vation. If the latter is true, then MTX must in- 
teract with an as yet undescribed calcium uptake 
mechanism, which is present in most cells and is in 
every case closely related to phospholipase C func- 
tion. A distinction between these two mechanisms, 
direct activation of phospholipase C or stimulation 
of a calcium uptake system closely associated with 
phospholipase C by MTX, cannot be made as yet. 
The very high potency of MTX (ECso 150 pM), the 
stimulation by MTX of phosphoinositide break- 
down in cells in which calcium ionophores have 
marginal effects (see section 3) and the lack of 
calcium ionophore activity for MTX in liposomes 
[18], all indicate that MTX does not stimulate 
phospholipase C simply by acting as a calcium 
ionophore. 

MTX elicits increases in intracellular calcium 
that appear in PC12 and NCB-20 cells to parallel 
stimulation of inositol 1,4,5-trisphosphate forma- 
tion [12]. MTX also has effects on cyclic AMP ac- 
cumulation elicited by receptor agonists or 
forskolin that parallel those seen with phorbol 
esters in PC12 and NCB-20 cells [12]; i.e. both 
MTX and phorbol esters enhance forskolin- 
stimulated accumulation of cyclic AMP in PC12 
cells and both inhibit prostaglandin E2-stimulated 
accumulation of cyclic AMP in NCB-20 cells [12], 
probably in both cases through activation of pro- 
tein kinase C by diacylglycerides generated during 
phosphoinositide breakdown. Thus, MTX, like 
receptors coupled to phospholipase C, generates 
functionally active second messengers; i.e., 
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inos i to l  1 ,4 ,5 - t r i sphospha te  and  diacylglycer ides ;  
the  inos i to l  t r i sphosha te  then  p r o m o t e s  release o f  
ca lc ium f rom in t race l lu la r  s tores ,  while d iacyl-  
g lycer ides  then  s t imula te  p ro t e in  k inase  C. 

In  conc lus ion ,  M T X  appea r s  to  be a genera l  and  
useful  ac t iva to r  o f  the  phospho l i pa se  C involved in 
p h o s p h o i n o s i t i d e  b r e a k d o w n .  The  use o f  M T X  
al lows inves t iga t ion  o f  effects  o f  p h o s p h o i n o s i t i d e  
b r e a k d o w n  in cells t ha t  possess  no k n o w n  recep-  
tors  coup led  to  phospho l i pa se  C. Such a genera l  
ac t i va to r  also al lows for  the  inves t iga t ion  o f  possi-  
b le  r ecep to r -med ia t ed  inh ib i to ry  inputs  to  phos-  
pho l ipase  C. 
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