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The nature of the Fe(III) EPR signal from the acceptor-side iron in 
photosystem II 
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The EPR spectrum at both X- and S-band (3.94 GHz) of the oxidized acceptor-side iron in photosystem II from spinach 
shows two absorption-type peaks at g = 8,0 and 5.6. The intensities of these peaks have been measured at X-band in 
the temperature range 2-10 K. All results can be fully described assuming that the EPR spectrum arises from high-spin 
Fe(III) with D =  1.0+0.3 cm -t and E/D =0.10+0.01. Quantifications show that the spectrum in our case represents 0.4- 
0.5 Fe(III) per reaction center. The EPR parameters are consistent with the iron having bicarbonate and/or tyrosine as 

ligands in addition to four imidazoles. 
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1. INTRODUCTION 

The reducing side of  PS II is visualized as a com- 
plex in which a ferrous ion is situated near the two 
plastoquinones, QA and QB. It is likely that it is 
built in analogy with the acceptor side of  the reac- 
tion center in photosynthetic purple bacteria [1,2]. 
This hypothesis is based on the spectroscopic 
similarities between the two systems [3] and the 
ol~servation of  sequence homologies between pro- 
teins D1 and D2 in PS II and the L and M subunits 
in tile bacterial reaction center [4,5]. 

The function of  the two quinones is quite similar 
in the two systems [6], but several properties of  the 
ferrous ion differ which probably reflects slightly 
different iron environments [3]. In bacterial reac- 
tion centers oxidation of  the iron has not been 
observed even under strongly oxidizing conditions 
[3], whereas in PS II the iron can be oxidized in the 
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dark with ferricyanide [7] or in the light in the 
presence of  some exogenous quinone-type accep- 
tors [8,9]. 

The ferric form of  the iron can be observed by 
EPR spectroscopy and shows a series of  
resonances around g = 6 [7]. Normally, two signals 
at g = 8 and 5.6 dominate the spectrum in PS II 
preparations from spinach. These resonances are 
sensitive to the occupancy of  the QB site and to 
chemical species bound to this site [9,10]. 

In the present work the EPR spectrum of the ox- 
idized iron in PS II has been studied at two EPR 
frequencies and at sub-helium temperatures. From 
these measurements a model is derived which is in 
accordance with that presented by Petrouleas and 
Diner [11]. An integration of  the EPR spectrum 
shows that it represents oxidized iron in a large 
fraction of  the PS II reaction centers. 

2. MATERIALS AND METHODS 

2.1. Preparation of photosynthetic material 
PS II-euriched thylakoid membranes from spinach were 

prepared as described in [12] and suspended at 10-15 mg 
Chl/ml in 20 mM Mes-NaOH, pH 6.3, containing 15 mM 
NaCl, 5 mM MgCI2 and 400 mM sucrose. 
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The acceptor-side iron was oxidized using the illumination- 
thawing procedure described in [9], with PPBQ (2 raM, added 
dissolved in ethanol) as an electron acceptor or using 5 mM 
K3Fe(CN)6 as an oxidant [7]. Photoreduction of the oxidized 
iron was accomplished by illumination of the X-band EPR 
samples at 200 K for 8 min. 

2.2. EPR spectroscopy 
EPR spectra at X-band (9.4 GHz) were recorded with a 

Bruker ER 200 D-SRC spectrometer and either an ESR-9 or an 
ESR-10 helium cryostat from Oxford Instruments. For spectra 
at S-band (3.9 GHz) a Bruker ER 061 SR microwave bridge and 
ER 6102 SR recntrant cavity were used. The ESR-9 cryostat was 
used also at S-band but with a home-made quartz insert allow- 
ing sample tubes with 12 mm outer diameter. A typical sample 
volume was 1.5 ml. 

The sample temperature at X-band was determined utilizing 
the high-spin Fe 3+ EPR signal from metmyoglobin essentially 
as described earlier [13]. However, the metmyoglobin could not 
be dissolved directly in the sample tube due to interference of 
its g = 6 signal with the sample signals. 

3. R E S U L T S  A N D  D I S C U S S I O N  

Fig.  1 shows X - b a n d  E P R  spec t ra  o f  the  oxid ized  
accep to r - s ide  i ron  in sp inach  p r o d u c e d  by  two dif-  
fe rent  me thods  a s  descr ibed  in sect ion 2. Both  
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Fig. I. X-band EPR difference spectra (oxidized minus reduced) 
of the PS II acceptor-side iron. The oxidation was 
accomplished either by illumination in the presence of PPBQ 
(A) or by ferricyanide (B) as described in section 2.1. 
Conditions for EPR: microwave frequency, 9.46 GHz; power, 
32 roW; modulation amplitude, 2.5 roT; temperature, 4.6 K. 

spec t ra  show two a b s o r p t i o n  peaks  wi th  g values  o f  
8.0 a n d  5.6. F u r t h e r m o r e ,  r epea ted  exper iments  
wi th  d i f fe ren t  p r e p a r a t i o n s  a lways  gave the same 
a r ea  r a t io  be tween  the two peaks  at  the  same 
t e mpe ra tu r e .  

F ig .2  shows the  S -band  E P R  spec t rum o f  the  
f e r r i cyan ide -ox id ized  i ron.  Wi th in  exper imenta l  
e r rors ,  the  g values  a re  the  same  as in X - b a n d ,  
which  is a s t rong  ind ica t ion  tha t  bo th  peaks  arise 
f r o m  K r a m e r s '  doub le t s  s epa ra t ed  by  more  t han  
the  X - b a n d  Z e e m a n  energy.  Otherwise  one  does  
no t  expect  a l inear  field dependence  o f  the  energy 
levels.  

Fig .3  shows the  spec t ra  o b t a i n e d  at  two  
t e mpe ra tu r e s  and  f ig.4 i l lus t ra tes  an  ex tended  
t e m p e r a t u r e  va r i a t ion  o f  the  two peaks .  The  inset 
shows the g values  ca lcu la ted  with  D ~ gun/] ,  i .e.  
essent ia l ly  at  zero magne t i c  f ield.  A t  X - b a n d  this 
c o n d i t i o n  is no t  comple t e ly  ful f i l led  at  high 
magne t i c  fields which means  tha t  the  smal ler  g 
values ,  i f  observed ,  are  expected to  d i f fer  
s o m e w h a t  f rom the values  given in f ig.4.  Howeve r ,  
this  does  no t  inf luence ou r  analysis .  I t  is clear  f rom 
figs 3 and  4 tha t  the  exper imen ta l  g values  o f  these 
peaks  and  thei r  t e m p e r a t u r e  dependence  can be ex- 
p l a ined  assuming  tha t  they  arise f r o m  high-spin  
Fe  3+ with the  s p i n - H a m i l t o n i a n  zero- f ie ld  
p a r a m e t e r s  D = 1.0 + 0.3 cm -~ and  E / D  = 0.10 +_ 
0.01. The  two peaks  at  g = 8.0 and  5.6 are  also ex- 
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Fig.2. S-band EPR difference spectrum (ferricyanide-oxidized 
minus sample without ferricyanide) of the aeceptor-side iron 
(10 mg Chl/ml). Conditions for EPR: microwave frequency, 
3.91 GHz; power, I0 mW; modulation amplitude, 0.4 roT; 

temperature, about I0 K. 
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Fig.3. X-band EPR difference spectra of the acceptor-side iron 
(15 mg Chl/ml) recorded at two temperatures. The sample was 

treated as in fig,lA. EPR conditions as in fig.1. 

pected to have absorption-type shapes in agree- 
ment with the experiments. The peaks connected to 
the other g values of  the two doublets and to the 
upper-most doublet are either too weak or too 
broad to be detected, possibly with the exception 
of  the gx -- 3.6 signal from the ground doublet (X- 
band at about 0.18 T, see fig.l).  

An important question is if the EPR signals at 
g = 8.0 and 5.6 correspond to substantial amounts 
of  Fe 3÷ or not. As the most important donors and 
acceptors can be quantified from their EPR spec- 
tra, one approach is to compare the number of  
electrons that have left the donor side and ap- 
peared at the acceptor side of  PS II after 
photoreduction of  the oxidized iron. In one experi- 
ment (cf. f ig. lA) the iron was oxidized using a 
200 K illumination (in order to transfer one elec- 
t ron to the acceptor side) and a subsequent thaw- 
ing cycle in the presence of  PPBQ. Then, a second 
illumination at 77 K was applied which results in 
photoreduction of  both Fe 3÷ and QA [8,9]. The 
electrons are taken from cytochrome b-559 and /or  
a chlorophyll molecule in PS II [14,15], while the 
oxygen-evolving system is inhibited [16]. Nor- 
malizing to the reaction center concentration (ob- 
tained from EPR signal IIslow, run directly after the 
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Fig.4. Temperature variation of the peaks at g = 8.0 (n )  and 
g = 5.6 (o). The amplitude (arbitrary units) at non-saturating 
power was used as a measure of intensity. The sample was the 
same as in fig.3. The lines are theoretical curves assuming that 
the two peaks arise from the ground and middle doublets, 
respectively. The insert shows the energy diagram and zero-field 
g values for high-spin Fe 3+ (S = 5/2) calculated with D = 

1.0 cm -I and E / D  = 0.10. 

first thawing at non-saturating conditions), we 
found that 0.65 cytochrome b-559 and 0.58 
chlorophyll had been oxidized whereas only 0.73 
QA had been reduced. Thus, the remaining 
0.65 + 0.58 - 0.73 -- 0.50 electrons should have 
rereduced the iron, which means that the recorded 
EPR spectrum corresponded to 0.50 Fe ~+ per reac- 
tion center. 

With the spin-Hamiltonian parameters known 
we can also evaluate the concentration of  Fe 3+ by 
direct integration of  the EPR signals simply by 
measuring the areas under the isolated g = 8.0 and 
5.6 peaks ([17], eqns 13 and 14). The peaks can be 
used independently and give slightly different 
values probably due to uncertainties in the base 
lines. Note, the ratio of  the areas under the g = 8.0 
and 5.6 peaks is predicted [17] to be 1.3 at high 
temperatures (> 10 K). After corrections for the 
population distribution among the three doublets 
using the measured zero-field splittings the final 
value was 0.37 Fe a+ per reaction center in fair 
agreement with the electron counting. In any case, 
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a substantial fraction of  the iron can be detected as 
Fe 3+. 

The coordination geometry of  the acceptor-side 
Fe in PS II probably resembles that in bacteria as 
the spectroscopic properties are very similar [3]. 
Rps. viridis shows a distorted octahedral coordina- 
tion with four nitrogen atoms from histidines and 
two oxygen atoms from glutamic acid as ligands 
[18]. The iron coordination cannot, however, be 
identical because of  the apparently much higher 
reduction potential for the bacterial center and the 
absence [19] in PS II of  the corresponding 
glutamic acid. On the other hand, the four 
histidines are conserved [18] also in PS II. 

Some non-heme dioxygenases produce EPR 
spectra quite similar to those of  the oxidized PS II 
iron. The yellow oxidized form of lipoxygenase 
from soybean has a similar zero-field splitting but 
the symmetry is somewhat more axial [20]. A re- 
cent EXAFS study [21] points to 4 +_ 1 histidines 
and 2 _+ 1 carboxylate oxygen as iron ligands in this 
enzyme. 

Complexes with protocatechuate 3,4-dioxygen- 
ase have been formed with E/D spanning the 
whole theoretical range 0 - 1 / 3  [22,23]. In its native 
form it has a rhombic spectrum but in some com- 
plexes with inhibitors [23] the EPR spectrum can 
be very similar to the PS II iron spectrum. The 
zero-field splittings are also very much the same 
but D is negative which produces an inverted 
diagram compared to fig.4 with the g ~- 8 peak 
arising from the uppermost doublet. M6ssbauer 
[22], resonance Raman and EXAFS [24] studies 
strongly suggest two histidines and two tyrosines as 
ligands. The involvement of  tyrosines is interesting 
because model studies have shown that coor- 
dinating phenolates lower the reduction potential 
[25]. 

Bicarbonate strongly influences both the Fe2+QT~ 
EPR signal [26] and the pH obtained after suc- 
cessive light flashes [27] and has been suggested as 
an iron ligand [28]. An interesting comparison can 
be made with the transferrins in which bicarbonate 
(or carbonate) is very likely directly coordinated 
[29] to the strongly bound ferric iron. Only one 
histidine but two tyrosines have been established as 
ligands [29] which fits well with the highly stabil- 
ized ferric valence state [30] in these proteins. 

Obviously, more work is required before one 
understands in which way the iron coordination in 

PS II differs from the bacterial one. However, our 
EPR data are consistent with those where the 
glutamic acid in bacteria has been replaced by 
tyrosine or bicarbonate (or both). 
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