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A calmodulin-like protein was isolated from suspension cultured cells of Cafharanthus rmeus and purified by a combina- 
tion of Ca*+-facilitated phenyl-Sepharose affinity chromatography and reverse-phase HPLC. The HPLC-purified protein 
was analysed using SDS-PAGE and found to be a homogeneous 19.5 kDa band in gels containing 1 mM EGTA unlike 
a higher plant calmodulin from spinach which migrated as a 17.38 kDa band. Despite this apparent difference in molecu- 
lar mass, the purified protein showed a similar increase in electrophoretic mobility (4010 Da) to spinach calmodulin (4200 
Da) in gels containing 1 mM Ca*+ and had a plant calmodulin-like UV spectrum and phosphodiesterase-activation 

profile. 
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1. INTRODUCTION 

Calmodulin is now considered to be a ubiquitous 
Ca2+ modulator protein in all higher plant and 
algal cells. However, there are no published ac- 
counts describing its purification from cultured, 
undifferentiated plant cells and subsequent iden- 
tification in vitro by its Ca2+-induced shift in elec- 
trophoretic mobility [l] in combination with its 
ability to activate CAMP phosphodiesterase (EC 
3.1.4.17) and other known calmodulin-dependent 
enzymes according to Cheung’s original definition 
of the protein [2,3]. These strict criteria must be 
applied to establish the presence of calmodulin in 
cultured plant cells not only due to their 
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physiologically de-differentiated state, but also 
due to the recent discovery of calmodulin-like pro- 
teins in higher plants and algae; these migrate with 
similar molecular masses to plant and animal 
calmodulins in SDS gels and can cross-react with 
calmodulin antibodies but cannot stimulate the ac- 
tivity of brain CAMP phosphodiesterase [4,5]. 

In cell suspensions of Catharunthus roseus, 
calmidazolium has been shown to inhibit the func- 
tioning of the plasma membrane redox pump 
system, suggesting a role for Ca’+-calmodulin in 
regulating the membrane potential [6]. We have 
found that application of the Ca2+ channel blocker 
verapamil and the calmodulin antagonist pimozide 
can stimulate secondary metabolism in C. roseus 
cell suspensions as detected by increased alkaloid 
accumulation (unpublished), suggesting that 
calmodulin-like proteins whose functioning can be 
perturbed are present in these cultures. 

We report here on the isolation and purification 
of a calmodulin-like CAMP phosphodiesterase ac- 
tivator protein from extracts of C. roseus cell 
suspension cultures. The purified protein exhibited 
plant calmodulin-like characteristics but had a 
higher molecular mass, as determined by SDS- 
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PAGE, than a plant calmodulin from spinach used 
as a standard. 

2. MATERIALS AND METHODS 

2.1. Equipment and biochemicals 
All chemicals were of analytical grade. Purified spinach 

calmodulin, activator-deficient CAMP phosphodiesterase and 
phenyl-Sepharose CL-4B were purchased from Sigma. 

2.2. Cell culture 
Undifferentiated cell suspensions of C. roseus (cell line 

LBE- 1, derived from anther tissue) were grown using inorganic 
salts and B-complex vitamins according to Murashige and 
Skoog [7], 100 mg/l glycine, 100 mg/l myo-inositol, 30 g/l 
sucrose, 2.8 pM a-NAA and 1 gM kinetin (120 rpm, 27°C). 

2.3. Cahnodulin-like protein isolation 
C. roseus cells were homogenized by sonic disruption in 100 

mM Tris-HCl (pH 8.0), 2.5 mM EDTA, 2.5 mM EGTA, 0.2 
mM DTT, 1 M KC!, 0.5 mM PMSF (2 ml/g fresh w’t) with 5% 
(w/v) PVPP. The acidic proteins were precipitated from this 
homogenate with ammonium sulphate and heat treated ac- 

cording to [8]. The heat-stable proteins (HSPs) were dialyzed vs 
20 mM Tris-HC! (pH 7.5), 0.2 mM DTT. 

2.4. Calmodulin-like protein purification 
The HSP fraction was made 2 mM with respect to CaClz and 

applied to a 14 ml bed volume column of phenyl-Sepharose 
CL-4B. The column was washed with 10 bed volumes of 25 mM 
Tris-HC! (pH 7.5), 0.2 mM DTT, 2 mM CaClz followed by 10 
bed volumes of buffer containing 0.5 M NaCl instead of CaClz. 
The calmodulin-like protein peak was then eluted with 25 mM 
Tris-HC!, 0.2 mM DTT, 4 mM EGTA. The calmodulin- 
containing fractions were identified using their ability to ac- 

tivate CAMP phosphodiesterase, dialyzed vs distilled water, 0.2 
mM DTT and freeze-dried. 

Final purification was achieved using reverse-phase HPLC 
with a 0.46 x 22 cm RP-8 Spheri-5 Crs column (Brownlee, San- 
ta Clara, CA). The proteins were applied with 10 mM sodium 
phosphate buffer (pH 6.2), 2 mM EGTA and eluted with a 
linear gradient of 5-50% acetonitrile in the same buffer at a 
flow rate of 1 ml/min using a Hewlett Packard 1090 liquid 

chromatograph. Absorbance (at 230 and 215 nm) and UV spec- 
tra were monitored with a diode-array spectrophotometer. 

2.5. Protein electrophoresis 
Discontinuous SDS-PAGE [9] was performed according to 

Burgess et al. [l] in a 14% resolving gel with a 7% stacking gel 
containing 1 mM CaClz or 1 mM EGTA. The fractions and a 
spinach calmodulin standard were electrophoresed at 5 mA/gel. 

P,roteins were stained with silver nitrate according to [lo]. 

2..6. Phosphodiesterase assays 
The assay solution (1 ml) consisted of 0.02 U activator- 

deficient bovine brain CAMP phosphodiesterase, 0.1 mg/ml 
ovalbumin, 0.2 mM CaClz, 4 mM MgS0+0.2 mM DTT, 2 mM 
CAMP and various amounts of the protein fractions in 40 mM 

Tris-HC! (pH 7.5) buffer as in [ll]. Pi was assayed as described 
by Fiske and SubbaRow [12]. 

2.7. Protein determination 
Protein concentrations were determined according to Brad- 

ford [13] with ovalbumin as standard and with HPLC using 
known amounts of spinach calmoduhn. 

3. RESULTS AND DISCUSSION 

3.1. Retection of calmodulin-like activity 
The calmodulin-like protein from C. roseus cell 

Fig.1. SDS-PAGE of protein fractions prepared from C. roseus cell suspension cultures in the presence of 1 mM EGTA (A) or 1 mM 
CaClz (B) in 14% gels. Lanes: (1,7) molecular mass markers as indicated (250 ng each); (2) ovalbumin alone; (3,4) HPLC-purified 
spinach calmodulin (500 ng) and HPLC-purified calmodulin-like protein from C. roseus cells (500 ng), respectively, both spiked with 

ovalbumin; (5) phenyl-Sepharose column EGTA eluted peak (1000 ng load); (6) original HSP fractions (5000 ng load). 
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suspension cultures was first detected in the heat- 
stable fraction (HSP) with SDS-PAGE (fig.1) as a 
protein band exhibiting enhanced mobility in the 
Ca2+-containing gels. The HSP fraction was found 
to enhance bovine brain CAMP phosphodiesterase 
activity 4-fold relative to the basal Ca2+-dependent 
level at saturation. This is typical of calmodulin 
from all animal and most plant sources [14]. The 
presence of a calmodulin-like protein was further 
confirmed by the inhibitory effects of 
trifluoperazine and EGTA on activator-dependent 
enzyme activity (not shown). The decrease in en- 
zyme activity with trifluoperazine exhibited log- 
dose-dependent inhibition with an apparent Ki of 
3 ,uM. The drug had no effect on the 
Ca2+-dependent, calmodulin-independent basal 
activity of the enzyme. The Ki found for EGTA 
(0.2 mM) corresponded to the original unbuffered 
Ca2+ concentration present in the assay solution 
and established the Ca2+ dependence of the 
calmodulin-like activator fraction. 

3.2. Purification of the calmodulin-like protein 
The calmodulin-like protein was purified from 

the HSP fraction using phenyl-Sepharose chroma- 
tography followed by reverse-phase HPLC. 

Calmodulin undergoes a marked increase in 
hydrophobicity after binding Ca2+ and this has 
been utilized for the purification of the protein 
from semi-purified extracts by first adsorbing it to 

12 .6 

1 
2 mM CaC12 

lo-- A 

6-- 

2 .. 
8 6-- 
2 
3 4-- 

0.5M NaCl 
2-- 1 

o-- 1 n 

I:.: ::::: ::::: :::::.::::i 
0 10 20 30 40 50 60 70 80 90 100110120130 

Fraction number 

Fig.2. Ca*+-facilitated hydrophobic-interaction chromatogra- 
phy of the HSP fraction using phenyl-Sepharose. 17 mg HSP 
fraction was loaded and the column treated with successive 
buffer washes as indicated. Absorbance is expressed in relative 

units. 

phenyl-Sepharose with buffer containing Ca2+ and 
then eluting it with EGTA [15]. In our case, the 
phenyl-Sepharose chromatography step (fig.2) co- 
purified a single dominant calmodulin-like band 
with a lower molecular mass band after SDS- 
PAGE (fig.1). The densely stained upper band 
migrated as a band of 19500 Da with EGTA and 
showed altered mobility in the presence of Ca2+ 
(15 490 Da) as originally detected in the HSP frac- 
tion. This accounted for an increase in mobility of 
4010 Da, similar to the value of 4200 Da for the in- 
crease for spinach calmodulin (fig.1) and is in 
agreement with Ca2+ -induced mobility shifts 
found with other higher plant calmodulins [8,16]. 
The apparent molecular mass of the protein in the 
presence or absence of Ca2+ was higher than what 
is typically found for plant calmodulins such as the 
spinach calmodulin used here. Native gel elec- 
trophoresis, amino acid analysis, Ca’+-binding 
and CD-spectral studies will confirm whether the 
purified protein is indeed a higher molecular mass 
form of plant calmodulin. 

Final purification was achieved by reverse-phase 
HPLC to remove other lower molecular mass con- 
taminants detected after electrophoresis of loads 
greater than 1 pg. Spinach calmodulin was also 
further purified by HPLC using the same column 
and elution conditions. 

The calmodulin-like protein had a lower reten- 
tion time than spinach calmodulin and was eluted 
with 36% acetonitrile. The HPLC peak fractions 
were dialyzed vs 10 mM Tris-HCl (pH 7.5) and 
freeze-dried. Only a small amount of calmodulin- 
like protein (45 pg) was recovered after HPLC, 
since various gradient rate trials were required 
before the one yielding maximal resolution was 
found. As a result, aliquots of freeze-dried 
purified protein were’ purposely spiked with 
ovalbumin (0.1 mg/ml) after dissolution to 
minimize loss from adsorption to container walls. 
The appearance of a 45 kDa band in the spinach 
and C. roseus cell suspension culture calmodulin 
lanes (fig.1) is the result of this treatment and also 
demonstrated that the increased mobility of the 
calmodulin-like protein in Ca2+-containing gels 
was not due to differences in gel consistency in 
those lanes. 

The final purified protein from C. roseus cell 
suspension cultures was found to have a plant 
calmodulin-like UV spectrum (not shown) and 
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Fig.3. Stimulation of activator-deficient CAMP phosphodiester- 

ase by various amounts of HPLC-purified spinach calmodulin 
and calmodulin-like protein from C. roseus cell suspensions. 
Points are means of triplicate enzyme assays; bars indicate SD. 
Standard deviations are within the dot radius for some points. 

phosphodiesterase-activation profile (fig.3). Its 
UV spectrum in the presence of 2 mM EGTA 
monitored during HPLC was very similar to that 
of spinach calmodulin under these elution condi- 
tions as well as other higher plant calmodulins in 
other buffer systems [17]. 

In summary, suspension cultured cells of C. 
roseus maintained in an undifferentiated state con- 
tain a calmodulin-like protein which may be a 
higher molecular mass form of plant calmodulin 
with a plant calmodulin-like UV spectrum and 
Ca”-dependent phosphodiesterase stimulatory ac- 
tivity in vitro. Further characterization of the pro- 
tein, including determination of whether it is able 
to activate NAD+ kinase, is presently being carried 
out in our laboratory. 
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