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Subcellular vesicles of Vibrio alginolyticus hydrolyze ATP and accumulate Na+ in an ATP-dependent fashion. The Na+ 
uptake is (i) strongly stimulated by @-discharging agents, i.e., the protonophorous uncoupler CCCP or valinomy- 
cin+K+ and (ii) arrested by DCCD at a concentration strongly inhibiting ATP hydrolysis. Lower concentrations of 
DCCD stimulate the Na+ accumulation supported by ATP hydrolysis as well as by NADH oxidation. It is concluded 

that there is an electrogenic DCCD-sensitive Na+-ATPase in the cytoplasmic membrane of V. alginolyticus. 
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1. INTRODUCTION 

In the marine alkalotolerant E/ibrio alginolyti- 

cus, the electrochemical Na+ potential difference 
(ApNa) can be generated by Na+-motive NADH- 
quinone reductase [l-3] and consumed by systems 
carrying out (i) accumulation of metabolites via 
Na+, the metabolite symporters [4], (ii) rotation of 
the flagellum by the Na+ motor [5,6] and (iii) ATP 
synthesis [7,8]. The latter effect, demonstrated in 
intact cells, was postulated to involve a Na+-ATP- 
synthase which, if reversible, may be regarded as 
Na+-ATPase. Below we shall describe experiments 
indicating that in the I/. alginolyticus membrane, 
there is an ATP-dependent mechanism competent 
in the electrogenic transport of Na+. 
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2. MATERIALS AND METHODS 

The I’. alginolyticus strain 138-2, kindly supplied by Pro- 
fessor H. Tokuda (Chiba University, Chiba, Japan), was grown 
aerobically at 37°C in a salt medium [3] in the presence of 0.5% 
glucose and 0.5% peptone, pH 8.6. At the late-logarithmic 
phase, the cell suspension was diluted two-fold with the same 
medium supplemented with penicillin (lo6 units x 1-i) and in- 
cubated for 70 min at 37’C. The obtained spheroplasts were 
sedimented at 7500 x g for 10 min and washed with a solution 
of 25 mM Tris-HzS04, 30 mM MgS04, 5 mM NaaSOd and 
150 mM KzS04, pH 7.5 (medium A), or 50 mM Tricine, 
30 mM MgSOd, 5 mM NaaSOG and 250 mM KzSO+ pH 8.2 
(medium B). The final spheroplast sediment was suspended in 
the same media supplemented with a serine proteinase inhibitor, 
0.5 mM phenylmethylsulfonyl fluoride. The suspension was 
sonicated in an ultrasonic UZDN-2T desintegrator for 10 s, 
four times with 1 min intervals, O”C, at a frequency of 22 kHz, 
4 x 1O-5 A current and maximal resonance. Intact and partially 
destroyed spheroplasts were removed by centrifugation at 
1200 x g for 10 min at 2°C. Subcellular vesicles were 
sedimented from the supernatant (48500 x g, 1 h, 2°C). The 
precipitate was suspended in medium A or B, using a glass 
homogenizer with a Teflon pestle and stored at 0°C. The final 
protein concentration in the stock solution was 10 mg’ml-‘. 

Naf transport was measured with the use of gel-filtration and 
centrifugation procedures [lo]. The process was initiated by ad- 
ding 10 mM substrate (ATP or NADH) to the suspension of 
subcellular vesicles. To stop the reaction, the suspension 
(0.05 ml) was centrifuged in a gel-filtration column (D = 
10 mm) with Sephadex G-50 coarse. As a buffer, a solution 
containing 5 mM Tris-HzSO4 and 120 mM MgS04, pH 8.5, was 

Published by Elsevier Science Publishers B. V. (Biomedical Division) 
00145793/88/$3.50 0 1988 Federation of European Biochemical Societies 355 



Volume 233, number 2 FEBS LETTERS June 1988 

used. The eluate was diluted IO-fold so as to measure Na+ with 
a PFM flame photometer. 

vesicles, we have found that NADH oxidation is 
coupled to Na+ uptake by the vesicles, the process 
being stimulated by valinomycin and inhibited by 

3. RESULTS 

In agreement with the observation of Tokuda et 
al. [ll] on everted subcellular I’. alginalyticus 

monensin (fig.lA). Under the same conditions, 
however, no measurable ATP-dependent Na+ up- 
take was observed (not shown). 

Further experiments showed that 2 x 10e5 M 
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Fig. 1. Na+ uptake supported by NADH oxidation or ATP hydrolysis in V. alginolyticus subcellular vesicles. (A) Medium A; (B,C) 
medium B. (B) 5 x 10m6 M valinomycin in all the samples; (C) vesicles were preincubated with 2 x IO-’ M DCCD for 10 min (similar 
DCCD treatment was applied to samples with DCCD in B). Where indicated, the following additions were made at zero time: 10 mM 
NADH, 5 mM ATP, 2 x 10m6 M valinomycin, 4 x lob6 M monensin and 2 x 10e5 M CCCP. (D) A scheme illustrating the interplay 

of the energy-linked and passive ion fluxes in the vesicles. 
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Table 1 

DCCD effect on ATPase activity and ATP-dependent Na+ 
uptake by V. alginolyticus subcellular vesicles 

[DCCD] 
OcM) 

_ 

20 
200 

Preincuba- ATPase (nmol Na+ uptake (ng 
tion ATP mg ion’mg 

(min) protein-‘. protein-’ 
min-‘) min-‘) 

_ 365 5 
10 275 35 
20 90 0 

ATPase and therefore arrests the ATP-dependent 
Na+ uptake. In this context, it should be men- 
tioned that Na+-ATPase of Propionigenum 
modestum proved to be a DCCD-sensitive enzyme 
of the subunit composition similar to that of the 
FoFr type H+-ATPase [12]. 

DCCD (3 nmol * mg protein-‘) strongly stimulated 
the NADH-oxidation supported Na+ transport; 
addition of ATP also resulted in an Na+ uptake 
which proceeded at a somewhat lower rate than in 
the NADH-containing sample (fig.lB). A higher (2 
x 10e4 M) concentration of DCCD inhibited the 
ATP-dependent Na+ accumulation and the AT- 
Pase activity (table 1). 

An interesting problem is the relation of the 
above described ATP-dependent Na+ to the 
H+-ATPase activity previously described by our 
group in the V. alginolyticus vesicles [ 13,141. The 
ATP-linked H+ transport is also stimulated by low 
DCCD, inhibited by high DCCD and stimulated 
by valinomycin. However, CCCP completely 
abolished the H+ uptake by vesicles. This fact is in 
contrast to the above data on the stimulation of 
Na+ transport by the same protonophore. The lat- 
ter observation excludes any explanation of the 
ATP-supported Na+ transport as a consequence of 
utilization of the A,LH produced by H+-ATPase. 

Just as in the case of respiration-linked Na+ up- 
take, the ATP effect was greatly stimulated by 
valinomycin and abolished by monensin. The pro- 
tonophorous uncoupler CCCP was found to effec- 
tively substitute for valinomycin as an activator of 
the ATP-dependent Na+ transport. Fig.lC shows 
that in the absence of valinomycin, no Na+ uptake 
was induced by the ATP addition to the vesicles 
treated with a small amount of DCCD. Such an 
uptake occurred when 2 x 10e5 M CCCP was pre- 
sent in the incubation mixture. 

Three possibilities may be considered to account 
for the ATP-linked Na+ and H+ pumps in I/. 
alginolyticus: (i) there are two DCCD-sensitive 
ATPases in the same membrane, one for Na+ and 
the other for H+; (ii) a single ATPase can transport 
alternatively Na+ or H+; (iii) a single ATPase is 
competent in the symport of Na+ and H+. 

4. DISCUSSION 

It may be noted that Na+-ATPase of P. 
modesturn transports H+ when Na+ is absent [15] 
and animal Na+/K+-ATPase performs an H+/K+ 
antiport at acidic pH in a Na+-free medium [16]. 
According to Boyer, substitution of Na+ for H+ 
can be explained assuming that the cation-binding 
sites are organized as crown ethers coordinating 
Na+ or H30+ [ 171. 

The above data are summarized in fig.lD. It is The functional significance of the existence of 
shown that Na+ can be transported into everted two primary ATP-driven pump activities, one 
vesicles by means of Na+-motive NADH-quinone dealing with H+ and the other with Na+, may 
reductase of Na+-motive ATPase. Such transport mean that V. alginolyticus can survive in both 
results in a positive charging of the vesicle interior. neutral and alkaline conditions. At neutral pH, the 
The formed A#, which prevents large-scale Na+ ac- proton cycle can be operative, which involves the 
cumulation, can be discharged by an efflux of K+ H+-motive respiratory chain and H+-ATP- 
or H+ in the presence of valinomycin or CCCP, synthase. At alkaline pH, when ApH and A$ are 
respectively. Apparently the procedure of prepara- oppositely directed, the sodium cycle is actuated, 
tion of vesicles caused a partial loss of the catalytic with the Na+-motive respiratory chain and 
parts of the Na+-ATPase, whereas the Na+-trans- Na+-ATP-synthase being involved. In agreement 
porting parts remained in the membrane and in- with this reasoning, it was shown in our group that 
creased its Na+ conductance. This conductance the V. alginolyticus respiratory chain, besides the 
seems to be sensitive to low concentrations of A,iJNa-generating NADH-quinone reductase, in- 
DC’CD which prevents the leakage of accumulated cludes the AJH generator(s) between quinol and 0~ 
Na+. A high amount of DCCD strongly inhibits P81. 
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