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Metabolism of 2-carboxyarabinitol l-phosphate (CA l-P), an endogenous inhibitor of ribulose. bisphosphate carboxylase/ 
oxygenase, occurs in the light. A soluble protein fraction which metabolized CA 1-P in the presence of NADPH was 
isolated from tobacco chloroplasts. A similar fraction from spinach exhibited much lower activity. The activity in tobacco 
extracts was stable overnight at 4°C but its maintenance during storage required dithiothreitol. The tobacco protein re- 
sponsible for CA 1-P metabolism was partially purified by ion-exchange FPLC of stromal extracts. The requirements 
for NADPH and dithiothreitol for activity of this protein suggest a mechanism for the light-dependent control of CA 

1-P levels in plants. 

Carboxyarabinitol l-phosphate; Ribulose bisphosphate carboxylase; NADPH; Light regulation; Photosynthesis; (Tobacco) 

1. INTRODUCTION 

Carboxyarabinitol l-phosphate is a naturally oc- 
curring inhibitor of ribulose-1 $bisphosphate car- 
boxylase/oxygenase [ 1,2] present in several 
agronomically important plant species including 
soybean, bean, potato and tobacco [3-51. Because 
of its structural similarity to the carboxylation 
reaction intermediate 2-carboxy-3-ketoarabinitol 
1 ,5-bisphosphate [ 1,2], CA 1 -P binds tightly to the 
active site of Rubisco forming a stable enzyme- 
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inhibitor complex [4,5]. Under natural conditions, 
CA 1-P accumulates in the dark, and by early mor- 
ning the inhibitor occupies from 50 to nearly 100% 
of the Rubisco active sites, a chloroplast concen- 
tration of about 2-4 mM [4,5]. Metabolism of CA 
1-P occurs relatively rapidly in the light [5-81 and 
can be blocked by DCMU, an inhibitor of 
photosynthetic electron transport [5]. However, 
the specific reactions participating in the synthesis 
and degradation of CA 1-P are not known. 

The mechanism by which photosynthetic elec- 
tron transport activity controls the level of CA 1-P 
in plants has not been identified. Results from a 
previous study demonstrated that light-dependent 
increases in total activatable Rubisco activity in 
tobacco protoplasts and leaves were inhibited by 
methyl viologen [8], an artificial photosystem I 

electron acceptor. Since the level of total Rubisco 
activity reflects the amount of CA 1-P bound to 
the enzyme [5], these data suggested that reactions 
on the reducing side of photosystem I (i.e. Fd- 
thioredoxin reduction, NADP+ reduction) are re- 
quired for the metabolism of CA 1-P. In the pre- 
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sent study, we identify the first step in CA 1-P 
metabolism as an NADPH-dependent reaction 
catalyzed by a soluble protein present in tobacco 
chloroplasts. 

2. MATERIALS AND METHODS 

Intact chloroplasts were isolated from tobacco (Nicotiunn 
rustica var. pulmilirr) and spinach (Spinacia oleracea L.) leaves 
[9] following pre-illumination for 10 min at 3OOfimol 
photons/m’ .s. The isolation procedure and all subsequent 
steps were performed at 4°C. Chloroplast pellets were lysed by 
vigorous resuspension in 20 mM Tricine-NaOH, pH 8.1, 
50 mM DTT, 10 PM leupeptin, 1 mM PMSF and 0.1 mM ED- 
TA and centrifuged at 18000 x g for 10 min. The supernatants 
were layered on linear 0.2 to 0.8 M sucrose gradients containing 
50 mM Tricine-NaOH, pH 8.1, 5 mM MgC12, 1 mM EDTA 
and 5 mM DTT. The < 18 S fraction, which contains the bulk 
of the stromal proteins but is free of Rubisco, was isolated by 
rate zonal centrifugation [lo]. The < 18 S fraction was freed of 
low molecular mass compounds and concentrated by repeated 
ultrafiltration on an Amicon YM-30 membrane in 100 mM 
Tricine-NaOH, pH 8.0, 10 mM MgC12 and 10 mM NaHCOj 
(Buffer A) containing 2 mM DTT, and was then either used 
directly in the assays or further fractionated by anion-exchange 
FPLCtm [ 111. 

Rubisco was purified from greenhouse-grown tobacco (N. 
tabucum, KY 14) using published procedures [ 1 1 - 131 and stored 
frozen as an (NH&SO4 suspension in liquid Nz. For assays, the 
thawed protein pellet was resuspended in buffer A containing 
50 mM DTT and incubated at room temperature. After 3 h, the 
activated enzyme was desalted at 23°C on a column of 
Sephadex G-50-80 equilibrated in buffer A containing 5 mM 
DTT. Rubisco protein concentration was determined spec- 
trophotometrically from the absorbance at 280 nm [13]. Solu- 
ble protein concentration in the extracts was determined by the 
Coomassie dye binding assay 1141. 

CA 1-P was isolated from darkened soybean leaves and 
purified by anion-exchange chromatography and BaCl2 
precipitation essentially as described in [2]. The final prepara- 
tion had a total organic Pi concentration of 2.25 mM. CA 1-P 
metabolism was assayed at 25°C by measuring changes in the 
extent of Rubisco inhibition in a two-stage assay. In the first 
stage, 3 ~1 of CA 1-P (a relative concentration of 1) was in- 
cubated for 30 min in buffer A containing 20 mM DTT 
together with the stromal extracts (150 pg protein) or the FPLC 
column fractions and the additions described in the text in a 
total volume of 100 ~1. In the second stage, 40 gg of activated 
Rubisco (0.57 nmol active sites) in 15-20 ~1 was added to allow 
inhibition of the enzyme by any CA 1-P remaining in the reac- 
tion mixture. After 30 min, 50 pl aliquots were assayed for 
Rubisco activity [8] in a total volume of 0.5 ml to determine the 
extent of CA 1-P inhibition. 

3. RESULTS 

The concentration dependence of the CA 1-P 
preparation, determined under the assay condi- 
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tions used for detecting CA I-P metabolism, is 
shown in fig. 1. At low concentrations of CA l-P, 
inhibition of Rubisco activity was linearly depen- 
dent upon the CA 1-P concentration, while higher 
concentrations produced up to 90% inhibition of 
Rubisco activity. 

Since CA 1-P is localized in the chloroplasts, in- 
tact chloroplasts were used as starting material for 
the isolation of a protein fraction capable of 
metabolizing CA 1-P. This fraction was prepared 
from chloroplast lysates by rate zonal centrifuga- 
tion and ultrafiltration and was assayed for activi- 
ty by measuring the extent of Rubisco inhibition 
remaining after incubation of CA 1-P with the ex- 
tract (table 1). For these experiments, relatively 
low concentrations of the CA 1-P preparation were 
used to ensure that inhibition was due to CA 1-P 
exclusively and not to possible contaminants in the 
CA 1-P preparation. 

Substantial inhibition of Rubisco was observed 
when chloroplast extracts were incubated with CA 
1-P either alone, or together with ATP prior to the 
addition of Rubisco (table 1). In contrast, inhibi- 
tion decreased considerably when CA 1-P was in- 
cubated with the stroma extract from tobacco 
chloroplasts in the presence of NADPH. At an 
equivalent protein concentration, a much smaller 
decrease in inhibition occurred with NADPH and 
stromal extracts from spinach. No decrease in the 
extent of inhibition was observed when CA 1-P 
was incubated with the tobacco extract in the 
presence of either NADP+ or NADH or when 
tobacco stromal preparations were heated for 
3 min at 100°C prior to incubation with CA 1-P 
and NADPH. The NADPH-dependent activity 
associated with the tobacco extract was stable for 
at least 24 h when stored at 4°C in buffer contain- 
ing 2 mM DTT. However, complete loss of activity 
occurred in preparations that were stored over- 
night without DTT (not shown). 

The increase in Rubisco activity which occurred 
following incubation of CA 1-P with the tobacco 
stromal extract and NADPH corresponded to an 
apparent decrease in CA 1-P concentration of 
82%, as determined from the concentration 
dependence of CA 1-P inhibition shown in fig.1. 
Spinach, which does not exhibit a Rubisco dark in- 
hibition effect [5], possessed only a slight capacity 
to metabolize CA 1-P; the increase in Rubisco ac- 
tivity with spinach stromal extracts and NADPH 
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O> 
RELATIVE CA I-P CONCENTRATION 

Fig.1. Effect of the relative CA 1-P concentration on the 
activity of purified tobacco Rub&o. Rubisco (40rg) was 
incubated in buffer A containing 20 mM DTT at 25°C with the 
indicated concentrations of CA 1-P in a total volume of 120 ~1. 
After 30 min, 50 ,~l aliquots were assayed for Rubisco activity. 
Activity is expressed as v/v,, the ratio of the rate divided by the 
control rate without CA 1-P. A relative CA 1-P concentration 
of 1 is the concentration of CA 1-P required to obtain 87% 

inhibition of 40pg Rubisco under these assay conditions. 

corresponded to only a 33% decrease in CA 1-P 
concentration. 

Decreases in the extent of Rubisco inhibition 
which occurred following incubation of CA 1-P 
with stromal extract and NADPH may be due to 

Table 1 

Requirements for metabolism of CA 1-P by stromal extracts 

Source of 
extract 

Incubation 
conditions 

RuBP carboxylase 
activity 

U/mg v/v, 

Tobacco chloroplasts no additions 
+ 1 mM ATP 

+ 1 mM NADPH 
+ 1 mM NADPH, 

- CA 1-P 

Spinach chloroplasts no additions 
+ 1 mM ATP 

+ 1 mM NADPH 
+ 1 mM NADPH, 

- CA 1-P 

0.37 0.27 
0.37 0.27 
1.08 0.80 

1.36 1.00 

0.26 0.19 
0.28 0.21 
0.41 0.30 

1.37 1.00 

No extract + 1 mM NADPH 0.19 0.14 

Metabolism of CA 1-P is indicated by a loss of Rubisco 
inhibition. v/v, is the ratio of the carboxylation rate divided by 

the control rate without CA 1-P 

either conversion of CA 1-P to a non-inhibitory 
metabolite during the first stage of the assay or a 
combined effect of NADPH and the extract on the 
binding of CA 1-P to Rubisco. In order to 
distinguish between these two possibilities, a 
discontinuous two-stage assay was used in which 
the first stage (i.e. preincubation of CA 1-P with 
stromal extract and NADPH) was deproteinized 
prior to the addition of exogenous Rubisco. In a 
time course experiment, the activity of Rubisco 
added in the second stage increased as a function 
of time when CA 1-P was preincubated for various 
lengths of time with the tobacco stromal extract 
and NADPH (fig.2). These results indicate that 
CA 1-P is actually metabolized (i.e. converted to a 
form which is no longer inhibitory to Rubisco) 
during incubation with the stromal extract and 
NADPH. 

The changes in Rubisco activity shown in fig.2 
corresponded to a hyperbolic decrease in the ap- 
parent CA 1-P concentration over time. This 
response is not unexpected considering the 
likelihood that the low concentrations of CA 1-P 
used in the assays were limiting for the reaction. In 
the absence of extract, there appeared to be no 
change in the level of CA 1-P after 60 min (fig.2). 
The addition of a large molar excess of Rubisco in 

z 1.0 

z, 
t 

-CA I-P . + EXTRACT 

fg o1 
0 IO 20 30 40 50 60 

TIME (min) 

Fig.2. Time course of CA 1-P metabolism measured by the loss 
of Rubisco inhibition. CA 1-P at a relative concentration of 2 
was incubated at 25°C with tobacco stromal extract (o), 
tobacco stromal extract plus 200 /cg/O. 1 ml of purified tobacco 
Rubisco (A) or in buffer alone (0). At the indicated times, 
50 ~1 aliquots were quenched by transfer to 200 81 methanol at 
4°C. Following removal of the precipitated protein, the 
supernatant was taken to dryness in vacua and resuspended in 
100 ~1. Rubisco (40 rg) was added and, after 30 min at 25°C 

50 ~1 aliquots were assayed for Rubisco activity. 
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Fig.3. Partial purification of the CA 1-P metabolizing protein 
by anion-exchange FPLC. Elution profile of CA 1-P 
degradative activity (represented as a loss of Rubisco inhibition 
(0)) and A280 absorbance from a 0.5 x 5 cm Mono Q column. 
Fractions (1 ml) were collected, concentrated IO-fold by 
centrifugal ultrafiltration and assayed for activity in the 
presence of NADPH. Control rates were 0.23 without extract 

and 1.24 with extract and NADPH but without CA 1-P. 

the first stage of the assay significantly decreased 
the apparent rate of CA I-P metabolism, in- 
dicating that free CA 1-P rather than bound CA 
1-P is required (fig.2). 

The tobacco stromal extract was fractionated by 
anion-exchange FPLC to partially purify the pro- 
tein active in CA 1-P metabolism (fig.3). When 
fractions were assayed for CA 1-P metabolizing 
activity, a single peak eluted from the column with 
about 0.3 M KCl, as shown by the peak of Rubisco 
activity (fig.3). The active fraction represented a 
minor portion of the total protein in the original 
stromal extract as evidenced by the AXO profile 
(fig.3) and SDS-PAGE of the individual column 
fractions (not shown). The FPLC-purified fraction 
was active only in the presence of NADPH and ex- 
hibited a rate of CA l-P-dependent NADPH ox- 
idation of 0.1 nmol/min at a relative CA 1-P 
concentration of 3. 

4. DISCUSSION 

In the presence of NADPH, a component of the 
soluble protein fraction from tobacco chloroplasts 

progressively renders CA 1-P incapable of in- 
hibiting Rubisco, presumably by facilitating its 
metabolism to a non-inhibitory compound. The re- 
quirement for NADPH in the degradative reaction 
is consistent with results from a previous study 
which showed that light-induced increases in total 
Rubisco activity in tobacco leaves and protoplasts 
were inhibited when electron flow was diverted 
away from ferredoxin [8]. Measurements of the 
redox state of the pyridine nucleotide pool show 
that the NADPH/NADP+ ratio is highest at very 
low irradiances and decreases with further in- 
creases in the irradiance level [15]. Since the con- 
centration of CA 1-P changes in response to a 
fairly wide range of irradiance levels [5,7,8], 
metabolism of CA 1-P in the light is probably not 
regulated solely by the redox state of the 
chloroplast NADP system. Instead, we suggest 
that, in vivo, the enzyme which metabolizes CA 
1-P may also require activation by Fd-thioredoxin, 
a requirement that would be consistent with the 
light-response of the process [6-81, the inhibitory 
effects of methyl viologen [8] and the apparent re- 
quirement for sulfhydryl reduction for 
maintenance of activity. 

The NADPH requirement clearly distinguishes 
the CA 1-P metabolism reaction from the ATP- 
dependent Rubisco activation reaction catalyzed 
by Rubisco activase [ 16-181. However, recent 
studies have shown that while Rubisco activase 
does not metabolize CA l-P, it does cause a 
decrease in the extent of Rubisco inhibition by CA 
1-P (Robinson, S.P. and Portis, A.R., personal 
communication), probably as a result of more 
rapid dissociation of the enzyme-inhibitor complex 
in the presence of Rubisco activase. This effect 
may have physiological relevance since the 
enzyme-inhibitor dissociation is too slow in vitro 
to account for the in vivo rate of CA 1-P 
metabolism [2,5]. 

The nature of the reaction responsible for CA 
1-P metabolism could not be determined 
definitively with the indirect assay used in this 
study. Based on the observation that NADPH ox- 
idation accompanies CA 1-P degradation, we sug- 
gest that metabolism of CA 1-P in chloroplasts 
may involve reductive conversion to either 
hamamelose l-phosphate (2-C-(phosphohydrox- 
ymethyl)-ribose) or hamamelose. This reaction 
would require that a source of energy be available 
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for CA 1-P metabolism in addition to the reduc- 
tam. Since exogenous ATP was not required for 
and did not stimulate CA 1-P metabolism (not 
shown), this energy is probably supplied by a 
source other than free ATP, for example by 
tightly-bound nucleotides or through rearrange- 
ment of the C-l phosphate. Confirmation of the 
reaction mechanism awaits product analysis but it 
is of interest to note that hamamelose and 
hamamelose bisphosphate, two possible 
metabolites of the CA 1-P reduction product, oc- 
cur in chloroplasts and are formed exclusively in 
the light [19]. 
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