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Heparin was found to inhibit the Ca 2+ release induced by inositoi 1,4,5-trisphosphate (IP3) in permeabilized pancreatic 
fit:ells obtained from obese hyperglycemic mice. The effect of heparin was dose-dependent and not due to inhibition of 
Ca 2+ uptake into the IP3-sensitive pool. The effect appeared specific for hepafin and was not reproduced by other polysac- 
charides such as chondroitin sulfates. Heparin might consequently be a useful tool when investigating the molecular 

mechanism whereby IP 3 mobilizes Ca 2+ . 
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1. I N T R O D U C T I O N  

In a variety of  cells certain agonists activate 
phospholipase C, promoting the hydrolysis of  in- 
ositol 4,5-bisphosphate with the subsequent for- 
mat ion  of  diacylglycerol and inositol 1,4,5-tris- 
phosphate  (IP3) [1]. Whereas diacylglycerol is an 
act ivator  o f  protein kinase C, IP3 releases Ca 2+ 
f r o m  intracellular stores [1]. The target for IP3 is 
mos t  likely the endoplasmic reticulum [1], 
a l though it has recently been proposed that  the 
trisphosphate-sensitive pool  represents a morpho-  
logically distinct organelle [2]. The IP3-induced 
Ca  2+ release is well characterized in many  different 
cell types, but so far the underlying mechanism is 
unknown.  The trisphosphate is believed to activate 
a membrane  bound receptor regulating the open- 
ing o f  some sort o f  Ca 2+ channel [3]. Specific 
binding sites for IP3 have been described in many  
tissues [4-6], but little is known about  the nature 
of  the putative Ca 2+ channel. After  having fulfilled 
its role as second messenger, IP3 can either be step- 
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wise dephosphorylated or converted to inositol 
1,3,4,5-tetrakisphosphate (IP4) by a specific ino- 
sitol 1,4,5-trisphosphate kinase [7-10]. Although 
the physiological role of  IP4 is somewhat  unclear, 
it has been suggested that  it opens up channels for 
Ca  2+ in the plasma membrane  [11]. 

Recently two of  us discovered that IP3 and IP4 
activate a protein phosphatase isolated f rom rat 
brain (Zwiller and Boynton, unpublished). This 
enzyme was active in the absence of  metal ions, 
preferentially membrane  bound and inhibited by 
heparin,  indicating that it may correspond to a 
protein phosphatase type-I  [12]. Such an enzyme 
might consequently be involved in the mechanism 
whereby IP3 releases Ca 2+. In the present study, we 
decided to investigate whether heparin interferes 
with IP3-induced Ca 2+ release in permeabilized 
pancreatic B-cells. 

2. M A T E R I A L S  A N D  M E T H O D S  

Pancreatic islets were obtained from obese hyperglycemic 
mice (ob/ob) taken from a local non-inbred colony [13]. A if- 
cell suspension was prepared and cultured as described [14]. 
The cells were permeabilized with electrical discharges (5 x 2.5 
kV/cm) and suspended in 25 #1 medium containing 110 mM 
KCI, 10 mM NaC1, 2 mM KH2PO4, 1 mM MgCI2, 2 mM 

Published by Elsevier Science Publishers B. V. (Biomedical Division) 
00145793/88/$3.50 © 1988 Federation of European Biochemical Societies 211 



Volume 229, number 1 FEBS LETTERS February 1988 

MgATP, 10 mM phosphocreatine, 20 U/ml creatine 
phosphokinase, 0.2 ~M antimycin and 1 ~g/ml oligomycin 
[15,16]. pH was 7.0 and the ambient Ca 2+ concentration was 
monitored with a Ca 2+ selective electrode [17]. Test substances 
were added as 100 x concentrated stock solutions with con- 
stant volume pipettes [18]. All experiments were performed 
with magnetic stirring at room temperature. The traces shown 
are typical for experiments repeated with at least three different 
cell preparations. Heparin, chondroitin sulfate A and C were 
bought from Sigma. IP3 was from Amersham and IP4 was a gift 
from Dr R.F. Irvine, Cambridge, England. 

3. RESULTS AND DISCUSSION 

When electrically permeabilized pancreatic /3- 
cells were incubated in a Ca2+-deficient medium 
containing ATP,  an A T P  regenerating system and 
mitochondrial  inhibitors, there was a marked se- 
questration of  Ca 2+ (fig. 1A), most  likely promoted  
by the endoplasmic reticulum [19]. Under these 
conditions, addition of  IP3 evoked a pronounced 
mobilization of  Ca 2+. In f ig. lB the cells were in- 
cubated in the presence of  50 /~g/ml heparin. 
Whereas there was almost no response to IP3, a 
pulse addition of  Ca 2+ still elicited a transient rise 
in the ambient Ca 2+ concentration. This effect o f  
heparin could not be explained in terms of  an in- 
hibition of  Ca 2+ uptake into the IPrsensi t ive  pool,  
since heparin added just prior to IP3 produced the 

same effect (fig.lC).  As demonstrated in fig.2, the 
effect o f  heparin was dose-dependent. Stimulation 
of  Ca 2+ release with 6 /zM IP3 was slightly at- 
tenuated by 1/~g/ml heparin and completely in- 
hibited at 100/zg/ml. Approx.  5-10/zg/ml heparin 
caused a 50% inhibition of the IP3-induced Ca 2+ 
release. Previous studies have shown that the ac- 
tivity of  protein phosphatase-! ,  isolated f rom rab- 
bit skeletal muscle and liver, is inhibited by heparin 
at concentrations similar to those used in the pre- 
sent study, but not by chondroitin sulfate A and C 
[20,21]. In accordance with these results, neither 
chondroit in sulfate A (fig.3A) nor C (not shown) 
had any effect, even at concentrations as high as 
100/~g/ml. Since the stimulatory effect o f  IP3 on 
the phosphatase activity was inhibited by Mg 2+ 
(Zwiller and Boynton,  unpublished), we in- 
vestigated the trisphosphate-induced Ca 2+ release 
in the presence of  high concentrations of  this 
divalent cation. However,  as is shown in fig.3B, 10 
m M  Mg 2+ neither inhibited the Ca 2+ release pro- 
moted  by IP3 nor interfered with the effect o f  
heparin (not shown). Although IP4 was found to 
activate the phosphatase,  10 /~M of  the 
tetrakisphosphate was ineffective in releasing Ca 2+ 
in permeabilized B-cells, as has previously been 
reported for other ceil types, including insulin pro- 
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Fig. 1. Effects of 6/~M IP3, 50 ~g/ml heparin and 0.25 nmol Ca 2+ on the ambient Ca 2+ concentration maintained by permeabilized 
pancreatic ~'-cells. In C, 50/~g/ml heparin was present throughout the experiment. 
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Fig.2. Effect of increasing concentrations of heparin on Ca 2+ 
release induced by 6/zM IP3. Mean + SE for 3-7 experiments. 

ducing RINm5F cells [10,22,23]. It is therefore not 
likely, at least in pancreatic d-cells, that IP3 pro- 
motes Ca 2+ release by activating a protein 
phosphatase. 

When looking for possible inhibitors of the 
IP3-induced Ca 2+ release, it is of interest to note 
that monoclonal antibodies, which effectively in- 
hibit the action of IP3 on platelet membranes, have 

been produced [24]. Morever, the IPrinduced 
Ca 2+ release has been found to be suppressed by 
micromolar concentrations of Cd 2+ in permeabil- 
ized d-cells [15]. The effect of  Cd 2+ might reflect 
its binding to IP3 and thereby changing the binding 
properties of the trisphosphate to its receptor [25]. 
We cannot exclude that heparin also exerts its ef- 
fect by binding IP3, but it should be remembered 
that both the polysaccaride and the trisphosphate 
are negatively charged [26]. Recently it was 
demonstrated that heparin interacts with receptors 
for IP3 in cerebellar membranes [27]. It is possible 
that such a mechanism also operates in pancreatic 
#-cells. 

Heparin is known to interact, not only with pro- 
tein phosphatases, but with a variety of different 
proteins [26,28,29]. The effect of heparin on the 
IPrinduced Ca 2+ release is probably of unspecific 
nature and most likely of  no physiological 
relevance. However, by using heparin and/or 
fragments of this polysaccharide, it should be 
possible to clarify more specifically the molecular 
identity of  the inhibitory site and thereby get a bet- 
ter understanding of  the intricate mechanism 
whereby IP3 promotes Ca 2+ release. 
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Fig.3. Effects of 6/zM IP3 and 10/~M IP4 on the ambient Ca 2+ concentration maintained by permeabilized #-cells. In A and B, the 
incubations were performed in the presence of 100/~g/ml chondroitin sulfate A and 10 mM MgCI2, respectively. 
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