Volume 229, number 1, 73-76

FEB 05595

February 1988

Psoralen photofootprinting of protein-binding sites on DNA

Wei-ping Zhen, Claus Jeppesen and Peter E. Nielsen

Department of Biochemistry B, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK 2200 N, Copenhagen,
Denmark

Received 28 December 1987

Using a BAL31 exonuclease assay 1o determine the sites of 4,5 ,8-trimethylpsoralen photocrosslinking in DNA we have

shown that 5-TA sites which are accessible 1o psoralen DNA interstrand photocrosslinking in naked DNA become inac-

cessible when protein, in casu, i-repressor E. coli or RNA polymerase are bound at their recognition DNA sequences

(Og: operator or deo! promoter, respectively). These results show that psoralens can be used as photofootprinting
reagents to study specific protein-DNA interactions.
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1. INTRODUCTION

Psoralens have been used extensively to study
chromatin structure by electron microscopy (e.g.
[1-5]) or by using radiolabeled psoralens (e.g.
[6,7]). From these studies it is inferred that the in-
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terstrand photocrosslinking by psoralens occurs in
‘protein-free’ parts of the chromatin exemplified
by the internucleosomal linker DNA.,

We have recently developed an enzymatic
method for determination of psoralen DNA in-
terstrand crosslinks at the nucleotide level [8]. As
an extension of this work we now report that pro-
teins such as A-repressor or RNA polymerase
bound to the DNA inhibit psoralen photo-
crosslinking. Thus, psoralens can be used as
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Fig.1. Sequence of the DNA fragments used. (a) deo! promoter DNA fragment. Transcription initiation (+ 1) and direction of
transcription () are indicated. $'-TA sites are underlined and the DNase 1 footprint of RNA polymerase binding (F— —1) is
also shown. (b) 1-Og, operator DNA fragment with DNase I footprint of A-repressor (L __1) and operator sequence { i i ) shown.
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photofootprinting reagents for studies of specific
protein-DNA interactions.

2, MATERIALS AND METHODS

A BamHI-Bgill fragment from pGD11 [9] which contains the
deo! promoter [10] was cloned into the BamHI site of pUCI18
to vield pCI200.

Two complementary, synthetic 23-mer oligonucleotides con-
stituting the Og, operator DNA [11] having Hiadl1I/BamHI
cohesive ends were cloned into pUC19 via the HindlII/BemH]1
sites in the polylinker of this plasmid.

RNA polymerase (purified according to [12]) was a gift from
Dr Kaj Frank Jensen, while A-repressor was purified from an
overproducing strain (pEA305 in E. cali XA90 [13], a gift from
Dr M. Piashne) according to [14].

Psoralen photoreactions were performed in 50 #l buffer using
the desired supercoiled plasmid (0.2 zg} and the samples were
irradiated for 25 min at 365 nm (Philips TL 20W/09 fluores-
cent light tube, 220 J-m™%-57"). The DNA was subsequently
purified by phenol extraction and linearized with the first
restriction enzyme, treated with BAL31, cleaved with the
second restriction enzyme, Y*P-end-labeled and analyzed by
polyacrylamide gel electrophoresis as in [8]. The buffer for the
A-repressor experiments was 10 mM Tris-HCL, pH 7.0, 2.5 mM
MgCl, 1 mM CaClz, 0.1 mM EDTA, 200 mM KCl, 100 zg/ml
BSA and 2.5 #g/ml calf thymus DNA. For experiments with
RNA polymerase 40 mM Tris-HCl, pH 8.0, 100 mM KCl,
5 mM MgCl, was used. All samples were incubated at 37°C for
10 min prior 1o being irradiated.

3. RESULTS AND DISCUSSION

Tt is well established that 5'-TA sites are much
more efficiently crosslinked by psoralens as com-
pared to 5'-AT sites [8,15,16]

The A-repressor Og; operator DNA sequence
contains two 5'-TA psoralen photocrosslinking
sites (fig.1, TAz7, TAy») and our plasmid construct
furthermore has a 5'-TA site 13 base-pairs outside
the Og; sequence (fig.1, TA,4). The TA 4 and TA,,
sites were used to study the effect of A-repressor
binding to the Og; operator on the psoralen DNA
interstrand photocrosslinking of TA sites (fig.2).
These results clearly show that the TAj; site which
is efficiently crosslinked in naked DNA becomes
completely protected in the presence of A-
repressor.

The absence of detectable crosslinking at TA4z is
ascribed to the inhibition of enzymatic action by
psoralen crosslinks. In this case inhibition of
HindlIl cleavage and/or end-labeling by DNA
polymerase.

The apparent relative increase in crosslinking of

74

FEBS LETTERS

February 1988

TAz7 in the presence of repressor is a consequence
of the degree of crosslinking (>1 crosslink per
fragment), which results in an over-representation
of the longer DNA fragments since BAL31 stops at
the first crosslink encountered [8].

Fig.2. Psoralen photofaotprinting of binding of A-repressor to
the Og; operator. The psoralen-treated plasmid was linearized
with HindIll, treated with BAL31, cleaved with EcoR]1 and end-
labeled. Lanes: 1, no repressor; 2,3, psoraten-treated in the
presence of A-repressor (0.7 and 2 ug, respectively); M, DNA
size marker., DNA analysis was performed on a 20%
polyacrylamide gel followed by autoradiography.
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The open complex between FE. cofi RNA
polymerase and a strong promoter, deof, was used
to study the effect of specific protein-DNA interac-
tions on the interstrand photocrosslinking of DNA
by 4,5',8-trimethylpsoralen in more detail, since
more psoralen crosslinking sites can be analyzed in
this system. The BamHI-Sall DNA fragment used
in this study (fig.1) contains 11 5'-TA sites which
are all crosslinked by the psoralen (fig.3a, lane 6;
fig.3b, lane 5). Furthermore, faint bands (< 10%
intensities) are observed at positions corresponding
to 57-AT sites. Upon binding of RNA polymerase
complete inhibition of psoralen photocrosslinking
occurs at sites TA1go, TAros and TA; 13 and ATsa,
while partial inhibition is seen at TA7; (figs 1,2).
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DNase I footprinting results have shown that
RNA polymerase protects to the —30 to + 13 se-
quence of the deoi promoter [17]. Accordingly,
5'-TA sites 100, 108 and 113 are not
photocrosslinked with 4,5’ ,8-trimethylpsoralen
when RNA polymerase is bound to the promoter,
in either the open or closed (not shown) complex,
These results show that tight binding of protein to
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Fig.3. Psoralen photofootprinting of binding of RNA polymerase to the deo/ promoter. (a) the plasmid (pCJ200) was linearized with

Sall, digested with BAL31 and cleaved with BamHI. The labeled DNA fragments were analyzed on a 10% polyacrylamide gel. Lanes:

5, no psoralen, control; 6, psoralen, no polymerase; 7,8, psoralen-treated in the presence of RNA polymerase (3 and 7 zg, respectively);

1—4, as lanes 5—8 but without BAL31 treatment. (b) The plasmid was linearized with BarmHI, digested with BAL31 and cleaved with

HindlIl. Lanes: 4, no psoralen, control; 5, psoralen, no polymerase; 6, psoralen-treated in the presence of polymerase; 1-3, as lanes
4—6 but without BAL31. The crosslinking degree was 0.005 per basepair. M, DNA size marker (pUCI9 x HinfI).
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DNA  inhibits psoralen photocrosslinking,
presumably due to a rigid conformation of the
DNA. This rigidity prevents the helix extension
and unwinding which are prerequisites for
psoralen intercalation and photobinding.

Interestingly, photocrosslinking of 5'-TAq; is
only partly inhibited, indicating a less tight
association of the enzyme with this part of the pro-
moter. A more loose protein DNA contact around
this site is also indicated by DNase I cleavage at
positions —34 and —35 [17].

These results clearly show that 4,5’,8-trimethyl-
psoralen (and presumably other psoralens as well)
can be used for photofootprinting studies of
protein-DNA  interactions, and also firmly
establish that psoralens do not induce DNA in-
terstrand crosslinks in DNA which is tightly
associated with protein.
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