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The S-CA DNA-sequence preference of daunomycin 
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The DNA-sequence specificity of daunomycin was investigated by DNase I footprinting and an E. coli RNA polymerase 
transcription-inhibition assay. The S-CA sequence was identified as being the highest affinity binding site, although other 
modest affinity (5’-GC, CG, CT, TC, AC) and poor affinity sites @‘-AA, AT, TA) were also observed. The preference 
of daunomycin for S-CA nucleotide sequence suggests that its biological activity may arise from association with the 

5’-CA-containing sequences thought to be associated with genetic regulatory elements in eukaryotes. 
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1. INTRODUCTION 

In the light of a growing awareness of the impor- 
tance of DNA-sequence recognition by a number 
of antibiotics [l-3], there have been several at- 
tempts to ascertain the DNA-sequence specificity 
of anthracycline anti-cancer drugs, such as 
daunomycin and adriamycin (fig. 1). However, 
there has been no consensus from either the ex- 
perimental evidence [3-51 or theoretical computa- 
tions [6-81 concerning the nature of DNA-se- 
quence discrimination by daunomycin. 

Although footprinting techniques have emerged 
as powerful tools for analyzing drug/DNA 
association phenomena [ 1,2], they have been un- 
successful in providing a clear indication of the 
DNA-sequence specificity of daunomycin [9, lo]. 
As these techniques rely on a competitive 
equilibrium between a drug and a destructive 
probe for the DNA substrate, this failure suggests 
a reexamination at subphysiological temperatures, 
where the kinetics of drug-DNA dissociation 
would be slower [lo]. 
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Here, we present the first experimental evidence 
of the DNA-sequence specificity of daunomycin 
using DNase I footprinting and an RNA 
polymerase transcription-inhibition assay at re- 
duced temperatures. 

2. EXPERIMENTAL 

2.1. Reagents 
Daunomycin was a gift from Farmitalia (Carlo Erba, Milan). 

The 203-bp EcoRI fragment of lac DNA containing the L8-UV5 
double mutant was kindly supplied by Professor D.M. Crothers 
(Yale University). 

2.2. DNase I footprinting 
DNase I footprinting was performed as in [ll] using a 
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Fig. 1. Structure of daunomycin (I) and adriamycin (II). 
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Hi~dIII/PvuII restriction fragment from pSP65, labelled at the 
3 ‘-terminus of the Hind111 restriction site using [ry-‘*P]dATP 
and AMV reverse transcriptase. The nucleotide sequence of the 
restriction fragment was established by G-specific cleavage [12] 
with reference to the known sequence of the plasmid [13]. 

2.3. Transcription inhibition 
Transcription with E. co/i RNA polymerase in vitro [14] 

utilised a 497-bp PvuII/Safl restriction fragment of a modified 
pBR322 vector lacking the tet and Pl promoters and containing 
the 203-bp EcoRI lac DNA fragment ligated into the unique 
EcoRI site [16]. Nucleotide sequencing of the RNA transcript 
was performed using 3 ’ -0methyl-CTP and 3 ’ -0-methyl-ATP 
1171. 

2.4. Electrophoresis and autoradiography 
Electrophoresis, autoradiography and densitometric analysis 

were performed using standard techniques [18]. 

3. RESULTS 

3.1. DNase I footprinting 
The equilibrium between the drug and DNA was 

probed by DNase I at several temperatures and a 
range of drug/DNA ratios. It was apparent from 
the autoradiograms (not shown) that the inhibition 
of enzymatic hydrolysis was dependent on both the 
DNA sequence and the drug/DNA ratio, Y. This 
effect was much more pronounced at 5°C than at 
25’C, and only the data taken at 5°C are presented 
here. Below v = 0.03, the apparent sequence- 
dependent inhibition of DNase I became indepen- 
dent of Y. Thus, to ensure that the highest affinity 
binding sites of daunomycin were being probed, 
densitometric analysis of the autoradiograms was 
confined to very low drug/DNA ratios. 

In fig.2, the ordinate represents the percentage 
ratio of the areas under complementary bands in a 
control lane (Y = 0) to that of a suitable digest (Y = 
0.025). Domains of cleavage inhibition (ordinate 
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values less than 100%) correspond to the drug- 
binding sites. A comparison of the number of 
times a dinucleotide sequence is implicated as a 
binding site (n) to the sum of all such sites in the 
visualized DNA fragment (N) demonstrates that 
the highest affinity binding site is (5 ’ or 3 ‘)-CA (n 
and n/NVo of 20 and 91%) respectively) followed 
by lower affinity sites (5 ’ or 3 ‘)-CG (5, 55%), (5 ’ 
or 3’)-CT (7, 50%), (5’ or 3’)-GG (2, 33%), (5’ 
or 3’)-AT (2, 20%) and (5’ or 3’)-AA (3, 21%). 

3.2. Inhibition of RNA polymerase transcription 
activity 

Elongation of the RNA transcript was allowed 
to proceed at 10°C in the presence and absence of 
daunomycin (Y -0.03) for various time intervals 
(not shown). A densitometric analysis of the 30 s 
lane on the autoradiogram is presented in fig.3. 
Sites where drug induced pausing corresponding to 
natural pausing have been ignored, except where a 
clear drug-induced enhancement is apparent on the 
corresponding control lane. Of the nine drug- 
induced block sites, seven involve transcription up 
to a 5 ‘-CA site, with the other two being 5 ‘-CG 
sites. The transcription was observed up to the 
nucleotide on the upstream (5 ‘) side of the drug 
site, or one nucleotide further upstream. The 
transcription-inhibition method appears insen- 
sitive to the lower affinity binding sites detected by 
DNase I footprinting, and we have taken the se- 
quences at which transcription-inhibition occurs as 
betraying the highest affinity receptor sites for 
daunomycin. 

The unambiguous conclusion drawn from 
analysis of the transcription data is that 
daunomycin associates preferentially with 5 ’ -CA 
sequences and that 5 ‘-CG sequences form a lower 
affinity binding site. 

A 

TATCGACAAAGGACACACTTTAACAATAGGCGAGTGTTAAGGTGTGTTGTATGCTCGGCCTTCGTATTTCACATTTCGG 

80 90 100 110 120 130 140 150 

Fig.2. Densitometric analysis of the DNase I footprinting data. The ordinate represents the fractional (410) enzymatic cleavage (v = 
0.025 compared to Y = 0) plotted as a function of the nucleotide sequence visualized on the autoradiogram (not shown). The darkened 

areas correspond to regions of diminished enzymatic cleavage and indicate drug-binding sites. 
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5'-ATTTCACACAGGAAACAGCTATGACCATGATTACGGATTCACTGGAATTCTCATGTTTGACAGCTT 
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"- ATCATCGATAAGCTGATCCTCTACGCCGGACGCATCGTGGCCGGCATCACCGGCGCCACAGGTGC 

90 100 110 120 130 140 150 

Fig.3. Transcription-detected drug block sites. The data were obtained from densitometric analysis of the 30 s elongation track on the 
autoradiogram (not shown). The transcribed sequence is shown from the nucleotides + 20 to + 150 downstream of the CPA-initiated 
UV5 promoter. The ordinate represents the percentage blockage normalized against the total radioactivity incorporated into transcripts 
beyond IO-mers. The effects of natural pausing were subtracted from the apparent drug-induced blockage. Drug-induced block sites 

were ignored if they did not exceed natural pausing by 15%. 

4. DISCUSSION 

In consideration of both the footprinting and 
transcriptional data, the overall sequence specifici- 
ty of daunomycin appears very similar to 
adriamycin and bis-adriamycin [ 15,161, being 
manifested as a distribution between high affinity 
(5’-CA), modest affinity @‘-AC, CG, GC, TC, 
CT, CC) and low affinity (5’-TA, AT, AA) sites. 
The observed inhibition of HpaI by daunomycin 
[19] is consistent with our observations. The two 
restriction sites corresponding to the low (I&, 
12.4pM) and high affinity (I&O, 6.7 PM) drug- 
binding sites contained one and two 5 ‘-CA flank- 
ing sequences, respectively. DNase I footprinting 
studies on the related anthracycline nogalomycin, 
have also implicated (5 ’ or 3 ‘)-CA sequences as 
the highest affinity binding sites [20]. Moreover, 
eight of the twelve reported adriamycin-induced 
DNA polymerase-inhibition sites are associated 
with neighbouring CA sequences [21]. 

In accord with the 5 ‘-pyrimidine-purine-3 ’ se- 
quence preferences of intercalators [22] and the 
importance of the OH (9) moiety in conferring 
biological activity [23] and stabilizing the 
drug/DNA interaction [24], several theoretical 
computations suggest the 5 ‘-CA sequence as a 
high affinity binding site [13,14]. Both our results 
[15,16] and those of others [20,21] on related an- 
thracyclines indicate that some 5 ’ -CA sites remain 

unoccupied. Although it is certain that flanking se- 
quences modify the intrinsic sequence preference 
of daunomycin, the nature of this relationship is 
presently obscure. 

Given the prevalence of alternating CA tracts in 
eukaryotes [25] and the postulated role of their 
B++Z conversion [26] in the activation of do- 
mains of DNA [27], the documented ability of 
daunomycin to reverse the B++Z transition [28] 
suggests that its biological activity may arise from 
the preferential interaction with the 5 ’ -CA genetic 
regulatory elements in DNA [29]. 
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