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Highly purified microvillar 110 kDa polypeptide-calmodulin (1 lOK-cam) complex was confirmed to have 
ATPase activities characteristic of a myosin. The effect of F-actin on these activities was investigated. The 
Mg2+-ATPase is activated about 2-fold by F-actin in a dose-dependent fashion, whereas the K+-EDTA- 
ATPase is inhibited by > 90% by F-actin. These data provide evidence for a functional relationship between 
the ATPase activity of 1 lOK-cam and its interaction with F-actin. They also extend the similarities between 
1 IOK-cam and myosin. The results suggest that higher cells contain in addition to myosin a second class 

of myosin-like molecules represented by 1 lOK-cam. 
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1. INTRODUCTION 

Regularly spaced lateral bridges attach the core 
bundle of actin filaments of intestinal microvilli to 
the plasma membrane [1,2]. Recently, evidence has 
been obtained to suggest that these bridges are 
comprised of a 110 kDa polypeptide-calmodulin 
complex (1 lOK-cam) [3-81. The purified complex 
shares some properties with muscle and non- 
muscle myosins, although these myosins typically 
consist of two heavy chains of -200 kDa and four 
light chains of - 18 kDa. Similarities between 
1 lOK-cam and the myosins include: (i) high 
K+-EDTA and Ca2+-ATPase activities and low 
Mg2+-ATPase activity [6,9]; (ii) saturable binding 
to F-actin in an ATP-reversible manner [7]; and 
(iii) the ability to ‘decorate’ F-actin to give rise to 
an arrowhead appearance [7]. Moreover, as with 
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myosins, both the ATPase and F-actin binding ac- 
tivities reside on the heavy polypeptide chain and 
are independent of the calmodulin ‘light chains’ 
[8]. The Mg’+-ATPase activity has been reported 
not to be activated by F-actin [6] or to be modestly 
activated [9]. 1 lOK-cam has not yet been 
demonstrated to couple ATP hydrolysis with 
mechanical work. 

We recently described an improved method for 
the purification of native llOK-cam and explored 
its interaction with F-actin [7]. Here, we in- 
vestigate the ATPase activity of 1 lOK-cam in rela- 
tion to its interaction with F-actin. We show that 
its ATPase activity, like that of myosin, is en- 
hanced by F-actin in the presence of Mg2+ and in- 
hibited by F-actin in its absence. 

2. MATERIALS AND METHODS 

Microvillar 1 lOK-cam was purified as described 
[7]. Brush border myosin was purified according to 
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Table 1 

Specific ATPase activities of llOK-cam and brush 
border myosin 

1 mM EDTA, 1 mM Ca2+ 5 mM Mg2+ 
1 mM EGTA” 

1 lOK-cam 
50 mM KC1 
0.5 M KC1 

Myosin 
0.5 M KC1 

502 357 14 
211 105 19 

625 382 10 

a All assays were performed in ATPase buffer with 
additions to give the final concentrations indicated. 
Values are expressed in nmol Pi/mg protein per min 

a new procedure, adapted from [6]. Rabbit skeletal 
muscle actin was purified [lo] and gel filtered [ 1 l] 
before use. ATPase assays were performed [12] in 
10 mM Tris-HCl, 50 mM KCl, 1 mM DTT, pH 
8.0, with appropriate additions as indicated, at 
37°C. The assay was found to be linear with time 
up to 30 min (the longest time point used). All the 
assays were repeated on a number of different 
1 lOK-cam preparations and representative values 
are presented in section 3. Gel electrophoresis in 
the presence of SDS was as described [7,13]. Pro- 
tein was determined calorimetrically [ 141 using 
bovine serum albumin as a standard. 
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Fig.1. 7.5%/15% SDS-polyacrylamide gel of purified 
microvillar llOK-cam (A), and purified brush border 
myosin (B). Molecular mass standards (in kDa) are 

indicated in lane C. 
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Fig.2. Effect of KC1 concentration on the ATPase 
activities of llOK-cam. The curves represent the 
activities in the presence of 5 mM MgC12, 5 mM CaC12 

and 1 mM EDTA, 1 mM EGTA. 

3. RESULTS 

The typical ATPase activities of purified 1 lOK- 
cam are listed in table 1, together with results ob- 
tained using brush border myosin. The purity of a 
1 lOK-cam preparation and brush border myosin as 
assessed by SDS gel electrophoresis is shown in 
fig. 1. Since the activities of myosins are typically 
measured in 0.6 M KC1 to inhibit filament forma- 
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Fig.3. Effect of F-actin on the Mg’+-ATPase activity of 
1 lOK-cam. The assays contained 100 pg/ml 1 lOK-cam 
and the indicated amounts of actin. The very low 
ATPase activity of F-actin alone was subtracted from 

the values obtained. 
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Fig.4. Effect of F-actin on the ATPase activity of 1 lOK- 
cam in the presence of 1 mM EDTA, 1 mM EGTA. The 
assays contained 20 pg/ml 1 lOK-cam and the indicated 
amounts of actin. The very low ATPase activity of F- 
actin alone was subtracted from the values obtained. 

tion, we explored the effect of KC1 concentration 
on the ATPase activities of llOK-cam and found 
that the K+-EDTA/EGTA and Ca*+-ATPases 
were inhibited by increasing KC1 concentrations, 
whereas Mg2+-ATPase was slightly enhanced 
(fig.2). Since 1 lOK-cam does not aggregate in low 
salt [7] and these conditions are more represen- 
tative of a normal physiological state, all further 
ATPase measurements on 1 lOK-cam were made at 
relatively low KC1 concentrations. 

Fig.3 shows the effects of F-actin on 
Mg*+-ATPase of 1 lOK-cam. F-Actin activation 
was invariably found, although the degree of ac- 
tivation varied from about 2- to 3-fold from one 
11 OK-cam preparation to another. The 
Cazf-ATPase activity was either unaffected by the 
presence of F-actin, or slightly reduced (not 
shown). 

By contrast, the KC-EDTA/EGTA activity was 
invariably found to be inhibited by -90% in the 
presence of F-actin (fig.4). In a similar manner, the 
K+-EDTA/EGTA ATPase of 0.1 mg/ml myosin 
was reduced from 625 to 14 nmol Pi/mg per min 
by the presence of 0.2 mg/ml F-actin. 

4. DISCUSSION 

In this report we confirm that microvillar 1 IOK- 

cam is an ATPase with the enzymatic 
characteristics of a myosin. The specific activities 
are somewhat higher than those reported by others 
[6,9], but show the same ratio between the 
K+-EDTA/EGTA, Ca*+- and Mg*+-ATPase ac- 
tivities. The higher activities may be due to the 
greater purity of the preparation and the lack of 
proteolytic products. We also show that 1 lOK-cam 
exhibits two enzymatic characteristics of a myosin: 

an Mg *+-ATPase that can be modestly activated by 
F-actin, and a K’-EDTA/EGTA ATPase activity 
that is inhibited by F-actin. The reason for the 
variable activation of the Mg2+-ATPase by F-actin 
is not yet clear. One possibility is that, like myosin, 
it depends on the degree of phosphorylation [15]. 
In this regard, it is of interest to note that the 
110 kDa polypeptide is a substrate for a kinase 
present in microvillar preparations [5]. 

The present data together with’earlier results [5], 
may give some insight into the interaction between 
1 lOK-cam and F-actin. Dissociation of 1 lOK-cam 
from F-actin requires both ATP (or other 
nucleoside triphosphates) and a divalent cation [5]. 
Thus, in the presence of K+-EDTA/EGTA and 
ATP, llOK-cam remains bound to F-actin, but 
dissociates in Mg*+ and ATP. The data are consis- 
tent with a model in which llOK-cam associates 
repeatedly with F-actin in Mg2+ and ATP, and 
thereby increases 1 lOK-cam’s Mg2+-ATPase activi- 
ty, whereas in K+-EDTA/EGTA llOK-cam is 
bound to F-actin which inhibits this ATPase activi- 
ty. These results provide further evidence for a 
functional correlation between the ATPase activity 
of llOK-cam and its ability to bind F-actin in an 
ATP-reversible manner. Further, they suggest that 
hydrolysis of Mg*+-ATP may be required in the 
binding/dissociation cycle of 1 lOK-cam and F- 
actin, in a manner similar to the cross-bridge cycle 
between myosin heads and F-actin. 

The results add substantially to the emerging 
biochemical similarities between 1 lOK-cam and 
bona fide myosins and suggest that there may be at 
least two distinct classes of myosin-like molecules 
in higher non-muscle cells. 
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