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Identification of the lesion in the stimulatory GTP-binding 
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The stimulatory GTP-binding protein (GO of the uncoupled mutant of $49 lymphoma cells is deficient in 
its ability to transduce hormonal signals from ligand-bound fl-adrenergic receptors to the catalytic compo- 
nent of adenylate cyclase. In order to define the genetic defect in the G~ of uncoupled $49 cells, a complemen- 
tary DNA clone encoding the ~-subunit of Gs was analyzed and the deduced primary structure of the defec- 
tive subunit compared to that of the wild-type subunit. A single nucleotide transversion was found that 
coded for a proline rather than an arginine at residue 389. The results indicate a domain of the ~-subunit 

of Gs that specifically interacts with hormone receptors. 

G-protein; Adenylate cyclase; Uncoupled mutant; ($49 lymphoma) 

1. I N T R O D U C T I O N  

Incubation of  $49 cells in the presence of ter- 
butaline and cAMP phosphodiesterase inhibitors 
allows for the selection of  mutants of  $49 lym- 
phoma  cells lacking the stimulatory form of  G- 
proteins [1]. The cyc- mutant  [2] and uncoupled 
mutant  [3] have been invaluable tools for 
elucidating the functional relationships among G- 
protein subunits and adenylate cyclase. 
Reconstitution in $49 cyc- cell membranes of  
purified protein components  has provided the ex- 
perimental basis for a model of  G-protein- 
mediated regulation of  intracellular cAMP levels 
[4]. 

The uncoupled mutant  cell has been of  
biochemical interest because it does not increase 

Correspondence address: B.A. Harris, Merrell Dow 
Research Institute, 16, rue d'Ankara, 67084 Strasbourg, 
France 

The nucleotide sequence presented here has been submit- 
ted to the EMBL/GenBank database under the accession 
number Y00703 

production of  cAMP in response to #-adrenergic 
agonists, but is responsive to the presence of  
cholera toxin, GTP and NaF. This suggests that 
the o~-subunit of  Gs is present and capable of  
stimulating the adenylate cyclase catalyst, but it is 
no longer capable of  transducing the neurohor- 
monal  signal via the #-receptor;  hence it is un- 
coupled f rom the receptor. On two-dimensional 
isoelectric focusing gels, the Gs-protein of  $49 un- 
coupled cells migrates with an isoelectric point 0.1 
pH unit less than wild-type G~ [5]. This charge dif- 
ference may be the result of  a single amino acid 
change or of  a covalent post-translational 
modification. The latter possibility was eliminated 
[6] by fusing $49 uncoupled cells to $49 cyc- cells 
which do not produce the cr-subunit o f  G~ [7,8]. 
The resulting heterokaryon behaved phenotypical- 
ly as the parent $49 uncoupled cell. This result 
argues against the loss of  a post-translational 
modification mechanism as the lesion in the Gs ce- 
subunit of  $49 uncoupled mutant.  

To determine if the lesion in the Gs of uncoupled 
cells is due to an amino acid substitution in its a L 
subunit,  a cDNA library was constructed f rom 
m R N A  of these cells and a clone having the entire 

Published by Elsevier Science Publishers B. V. (Biomedical Division) 
00145793/87/$3.50 © 1987 Federation of European Biochemical Societies 365 



Volume 224, number 2 FEBS LETTERS November 1987 

coding region of the Gs o~-subunit was sequenced. 
The pr imary structure of  the ce-subunit of  G~ from 
uncoupled $49 cells was determined and compared 
to that of  murine, bovine and human cr-subunits. 

2. MATERIALS AND M E T H O D S  

2.1. RNA analysis 
Total RNA was purified f rom $49 mutant  lym- 

phoma  cells using a CsC1 cushion [9]. For Nor- 
thern analysis, 10/zg of total RNA was denatured 
with glyoxal and resolved through a 1.5% agarose 
gel prior to transfer to a nitrocellulose membrane 
[10]. The blot was hybridized to a labeled single- 
stranded cDNA probe [11] corresponding to an in- 
ternal EcoRI-BamHI fragment of  the bovine brain 
cDNA encoding G~c~ [8]. Hybridization was per- 
formed in the presence of  50% formamide,  5 x 
SSC, 1 x Denhardt 's  solution, 20 mM sodium 
phosphate,  100/~g/ml salmon sperm DNA and 1% 
SDS. The blot was washed in 2 x SSC with 1% 
SDS for 30 min at room temperature followed by 
a I h wash in 0.1 x SSC with 1% SDS at 62°C. The 
hybridization signals were obtained after overnight 
exposure to Kodak XAR-5 film. 

2.2. DNA analysis 
High-M, DNA was prepared f rom $49 cell 

mutants  essentially by the method of  Blin and Staf- 
ford [12]. Purified DNA was restricted with com- 
mercially available restriction endonucleases, 
resolved through a 0.8% agarose gel and transfer- 
red to nitrocellulose [13]. The DNA blot was 
hybridized to the same probe and conditions 
described for the Northern blot. The Southern blot 
was washed in 2 x SSC with 1% SDS for 30 min 
at room temperature followed by a 3 h wash in 
0.5 x SSC with 1% SDS at 60°C. The 
radiographic images were obtained after a 3 day 
exposure to DuPont  Cronex film. 

2.3. Cloning and sequence analysis 
A complementary DNA library was constructed 

f rom $49 uncoupled cell mRNA using the 
eukaryotic expression vector pcDV [14]. The 
cDNA library was prepared for hybridization us- 
ing standard procedures [15] and screened with a 
uniformly labeled single-stranded probe prepared 
f rom a restriction fragment corresponding to the 
5 ' -end  of  a human cDNA clone encoding Gsa,. 

One clone was obtained (pUNC-6) that produced a 
restriction endonuclease pattern characteristic of  
Gso~ cDNA clones of  human and bovine origin. 
Fragments of  the pUNC-6 cDNA were subcloned 
into the sequencing vectors M13mpl8 and 
M l 3 m p l 9  and sequenced on both DNA strands 
with a commercially available universal primer by 
the dideoxynucleotide terminator  method [16]. 
DNA sequence data were compiled and analyzed 
with the computer  program of  Queen and Korn 
[17]. 

3. RESULTS 

3.1. Expression o f  G ~  message in $49 cells 
Northern analysis of  total RNA from $49 mu- 

tant and wild-type cells is shown in fig. 1. There is 
a single species of  mRNA observed in both wild- 
type RNA and in the RNA from the uncoupled 
mutant  that hybridized to the probe with equal in- 
tensity. This result indicates two important  
characteristics of  the $49 uncoupled mutant .  First, 
the presence of  an mRNA in an amount  equivalent 
to that observed in wild-type cells suggests that a 
mutational defect has not altered the rate of  
transcription of  the Gscr gene in uncoupled cells, 
thus the promoter  and regulatory elements of  the 
gene are probably unaltered. Analysis o f  the Gs- 
protein in extracts of  wild-type and uncoupled $49 
cells indicates a protein of  identical size that is pre- 
sent in approximately equivalent amounts in mem- 
branes [5] suggesting that the translational start 
and stop codons in the gene are not mutated.  The 
second informative aspect is that the Gsce mRNA 
that accumulates in uncoupled cells is essentially 
the same size (1900 bases) as that of  wild-type cells. 
Because there is no species of  mRNA that ac- 
cumulates as a larger or smaller messenger, it is 
probable that mRNA-processing enzymes and the 
splice junctions of  the Gscr gene are intact in the 
uncoupled mutant.  

The RNA of  $49 cyc- cells indicated by the Nor- 
thern analysis in fig. 1 is quite different f rom $49 
uncoupled cells. The absence of a detectable 
hybridization signal [8] suggests that the gene en- 
coding Gso~ is not transcribed in these cells or that 
the m R N A  is unable to accumulate to levels detec- 
table in hybridization to total RNA. Like the un- 
coupled cell, G~o~ mRNA does not accumulate in 
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Fig.1. Analysis of G~u mRNA expression in $49 
lymphoma cells. Total RNAs (10/zg) from wild-type 
(wt), Gs-deficient (cyc-) and Gs-uncoupled (UNC) $49 
cells were hybridized to a G~ct cDNA probe from bovine 

brain [8]. 

Bern HI HMd lU Xba I 

Fig.2. Organization of the Gsa gene in $49 lymphoma 
cells. Genomic DNAs (5/zg) from wild-type (wt), Gs- 
deficient (cyc-) and Gs-uncoupled (UNC) $49 cells were 
restricted with the indicated restriction endonuclease. 
After the DNAs were resolved through a 0.8°70 agarose 
gel and blotted, they were hybridized to a Gso~ cDNA 
probe from bovine brain [8]. Molecular mass markers 
(kilobase pairs) are a HindlIl restriction digest of 

bacteriophage A DNA. 

cyc-  cells to a larger or smaller size than the wild- 
type Gso~ m R N A  which again argues against a com- 
promised RNA splicing mechanism in cyc- cells. 
Gsce produced in cyc- cells after gene transfer can 
revert the insensitivity to isoproterenol indicating 
that the recombinant protein is processed to an ac- 
tive form [18]. A likely explanation for the absence 
of  a hybridization signal in cyc- cell RNA is that 
the promoter  governing transcription of the Gsoe 
gene no longer allows transcription to occur in 
these cells. 

3.2. G ~  gene organization in $49 mutant cells 
Restriction endonuclease fragment patterns of  

genomic DNA from $49 wild-type, cyc- and un- 
coupled cells that hybridized to a bovine cDNA 
probe for Gsce are shown in fig.2. Regardless of  the 

enzyme used to restrict the DNAs, an identical pat- 
tern of  hybridizing fragments emerged. This result 
argues against a gross alteration of  DNA organiza- 
tion in either of  the $49 mutants analyzed; 
however, deletions or inversions of  DNA within a 
confined domain of the gene might not be detected 
by an analysis with the restriction endonucleases 
used. The lack of restriction fragment length 
polymorphisms in the gene for G~ce of  $49 un- 
coupled cells is not surprising because intact G~ of 
apparent  normal molecular mass has been ob- 
served in membrane extracts of  $49 uncoupled 
cells [5]. 

3.3. $49 uncoupled G ~  cDNA clone analysis 
A cDNA clone encoding Gso~ was isolated by 

cross-hybridization to a restriction fragment f rom 
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10 20 3Q 40 50 60 70 
CCCCGCGCCCCGCCOCCGCA~GOCTGCCTCGGC~CAGT~GACCOAGGACCAOCOC~COAOGA0~G 

M G C L G N S K T E D Q R N E E K I 7  

8% 90 I06 PCI 120 130 140 
GCGCAGCGCGAGGCC~CAAAAAGATCGAG~GCAGCTGCAG~GGAC~GCAGGTCTACCGGGCCACGC 
A Q R E A N K K I E K Q L Q K D K Q V Y R A T  40 

156 166 176 180 190 20% Bom HI 216 
ACCGCCTGCTGCTGCT~GTGCTGGAGAGTCTGGCAAAAGCACCA~GTG~GCAGATGAGGATCCTGCA 
H R L L L L G A G E S G K S T I V K Q M R I L H 6 4  

226 230 240 25% 260 27% 280 
~TGOGTTT~C~AGAGGGC~CG~GA~ACCCGCAGGC~C~AGC~CAGCGATGGTGAG 

V N O F N G E G G E E D P ~ A A / S M S D G E 8 7  

290 300 310 32g 336 340 35% 
~GGCCACTAAAGTGCA~ACATCAAAAAC~CCTG~A~CCA~GAAACCATTGTGGCCGCCATGA 
K A T K V Q D I K N N L K E A I E T I V A A M I I O  

360 370 38% 390 400 41~ 42% 
GC~CCT~TGCCCCCTGTGGAGC~GCC~CCC~AG~CCAG~CAGAGTGGACTACA~CTGAGCGT 
S N L V P P V E L A N P E N Q F R V D Y I L S V I 3 4  

430 44% 45% EcoRI 466 470 480 490 
GATG~CGTGCCCGACTTTGAC~CCCACCTG~CTATGAGCATOCC~GOCTCTGTGGGAGGATGAG 

M N V P D F D F P P E F Y E H A K A L W E D E I 5 7  

500 510 520 53% 540 550 560 
GGAGTGCGTGCCTGCTACGAGCGCTCC~TGAGTACCAGCTGA~GAC~TGCCCAGTAC~CCTGGACA 
G V R A C Y E R S N E Y Q L I D C A Q Y F L D I S O  

570 580 59% 660 61e 620 630 
AGA~GA~TGATC~GCA~CCGACTACGTGCC~GTGACCA~ACCTGC~CGCTGCCGTGTCCTGAC 
K I D V I K Q A D Y V P S D Q D L L R C R V L T 2 0 4  

640 65% 660 67% 680 690 700 
CTCTGG~TCTTTGAGACC~G~CCAGOTGGACAAAGTC~CTTCCACATG~CGATGTGGGCGGCCAG 

S G I F E T K F Q V D K V N F H M F D V G G Q 2 2 7  

710 8am HI 73% 740 750 760 770 
CGCGATG~CGCCGC~GTGGATCCAG~C~C~TGATGTGACTGCCATCATCTTCGTOGTGGCCAGCA 
R D E R R K W I Q C F N D V T A I I F V V A S  250 

780 790 800 810 P$11 830 840 
GCAGCTAC~CATGGTCA~CGGGAGGAC~CCAGACT~CCGCC~CAGGAGGCTCTG~CCTCTTCAA 
S S Y N M V I R E D N Q T N R L Q E A L N L F K 2 7 4  

850 860 870 880 890 900 910 
GAGCATCTGG~C~CAGATGGCTGCGCACCATCTCTGTGA~CTC~CCTC~C~GC~GACCTGCTT 

$ I W N N R W L R T I S V I L F L N K Q D L L 2 9 7  

920 930 940 950 960 970 980 
GCTGAGAAAGTCCTCGCTGGCAAATCG~GATTGAGGACTACTTTCCAGAGTTCGCTCGCTACACCACTC 
A E K V L A G K S K I E D Y F P E F A R Y T T  320 

990 1000 1010 1020 1030 1040 1050 
CTGAGGATGCGACTCCCGAGCCGOOAGAGGACCCACGCGTGACCC~GCC~GTAC~CA~CGGGATGA 
P E D A T P E P G E D P R V T R A K Y F I R D E 3 4 4  

1060 1070 le80  1090 1100 1110 1120 
GTTTCTGAG~TCAGCAC~CTAG~GAGATGGGCGCCACTACTGCTACCCTCACTTTACCTGCGCCGTG 

F L R I S T A S G D G R H Y C Y P H F T C A V 3 6 7  

1130 1140 1150 1160 1170 1180 
GACACTGAG~CATCCGCCGTGTC~C~CGAC~CCG~ACATCATCCAGCGCATGCATCT~C~AAT 
DTENIRRVFNDCRDIIQRMHLP~_JQ 390 

1200 1210 1220 1230 1240 1250 1260 
A C G A G C ~ C T C T ~ G ~ G G O ~ C A C C C A A A T T T ~ C A G C C ~ O C A C ~ T T ~ G A G T G A A A C G  
Y E L L  ~ 4  

1270 1280 1290 1300 1310 1320 1330 
T~TTGTAC~GCAGTTGGTCACCCAC CATAGGGC ATOATC~CAC C GC~C CTTTC C'F~-L'TC C C C CAG 

1340 1350 1360 1370 1380 Hind III 
TGA~C~AAAAACCC CTC~CCC~CAGC~GC~AGATG~CCAAATTTAG~GC~ 

Fig.3. The $49 uncoupled GsoL cDNA sequence. The nucleotide sequence of the cDNA insert of pUNC-6 encoding the 
cr-subunit of Gs is listed in the 5' to 3' orientation. The initiating methionine residue is located at nucleotide residue 
20; the Gsot sequence is read to nucleotide residue 1201. The underlined sequence indicates the peptide domain that 
specifies the longer form of Gsa. The boxed nucleotides indicate the mutated codon for proline at amino acid residue 

389. 
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a human Gs~ cDNA clone (in preparation).  This 
clone, pUNC-6, was sequenced on both DNA 
strands after subcloning restriction endonuclease 
fragments into the vectors M13mpl8  and 
M 13mp 19 [19]. The complete nucleotide sequence 
of  the $49 uncoupled cDNA is presented in fig.3. 
An open reading frame is found f rom the initiating 
methionine at nucleotide residue 20 to the termina- 
tion codon at residue 1204. The cDNA in pUNC-6 
encodes the long form of  G ~  due to the presence 
of  the 14 amino acid region f rom residues 73 to 86 
[201. 

The nucleotide sequence of the $49 uncoupled 
cDNA for Gscr has more than 95% identity to 
bovine [21,22], rat [23], human [24] and is almost 
exactly identical to that of  murine Gscr [25] except 
for the extreme amino-proximal  domain.  The first 
13 amino acid residues of  the published murine se- 
quence of a cDNA encoding G~ot do not correlate 

with those of  the $49 uncoupled sequence shown in 
fig.3 or with the bovine, rat or human sequences. 
Conversely, the first 14 amino acid residues of  the 
$49 uncoupled Gsc~ sequence match exactly with 
the published bovine and rat sequences and differ 
only by one amino acid (Asn-5) with the human se- 
quence. It is likely that the published sequence for 
the murine Gsa, cDNA clone is in fact not full- 
length, having undergone a deletion near the 
5 '  -end. 

For our purpose of  comparing the primary 
structures of  the uncoupled Gs oe-subunit and func- 
tional G~oe we will rely on the bovine and rat se- 
quences for the amino-proximal domain. Because 
these first 14 amino acids are identical to func- 
tional forms of  Gsoe, we can eliminate this region 
as containing the uncoupled lesion. Comparing the 
remainder of  the $49 uncoupled G ~  sequence with 
the murine form reveals an absolute agreement in 

uncoupled 
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Fig.4. Identification of the G-C transversion in the $49 uncoupled G~a gene. The BamHI-HindlII restriction fragment 
(nucleotide residues 720-1390 in fig.3) was subcloned into the vector Ml3mpl9. A portion of th e sequence ladders 
obtained from this fragment encoding the carboxy-terminal region of Gs~ is shown. On the left are listed the nucleotide 
sequence and inferred amino acid sequence derived from the uncoupled Gs~ cDNA fragment. On the right is listed the 
murine sequence corresponding to a wild-type G~o~ [25]. The transversion is indicated by the cytidine residue with an 

asterisk in the uncoupled sequence which is a guanine residue in the wild-type sequence. 
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sequence except for Arg-389 which is a proline in 
the uncoupled form of  G ~ .  

That  the amino acid change at residue 389 is due 
to a mutational event is shown in fig.4. The 
nucleotide sequence of  the carboxy-terminal do- 
main between Met-386 and Tyr-391 clearly in- 
dicates a series of  5 cytosine residues; nucleotides 
1184-1186 code for proline. The wild-type 
(murine) sequence is CGC which encodes arginine. 

4. C O N C L U S I O N  

The present results address the genetic basis of  
the nonfunctional ce-subunit of  the stimulatory 
GTP-binding protein of  $49 uncoupled lymphoma 
cells. Preliminary evidence suggesting that the le- 
sion in Gs is a mutat ion is presented in figs 1 and 
2. Northern analysis of  the Gscr message indicated 
an apparent  normal size and amount  while blot 
analysis of  DNA failed to indicate that the gene for 
G~ce in $49 uncoupled cells was compromised.  
Following molecular cloning of the cDNA for the 
o~-subunit of  G~ and a comparison of  the deduced 
pr imary structure of  the protein with a functional 
version f rom rat, bovine and murine sources, a 
single amino acid substitution was identified in the 
uncoupled mutant  protein. The substitution of  an 
amino acid with a nonpolar  side chain (proline) for 
an amino acid with an ionic side chain (arginine) at 
residue 389 can explain the isoelectric pH shift of  
the uncoupled G~o~ that was observed previously 
[5]. 

The location of  an amino acid substitution near 
the carboxy-terminus of the ce-subunit of  Gs sug- 
gests that this domain of  the protein is directly in- 
volved in the coupling with the ~-adrenergic 
receptor. It may be informative to determine 
whether the uncoupling of the mutant  G~a f rom 
the fl-adrenergic receptor is due to the loss of  an 
ionic interaction involving Arg-389 or the in- 
troduction of  a turn in the polypeptide domain 
with the substitution of a proline residue. Iden- 
tification of  this lesion represents a further step 
towards a greater understanding of the molecular 
events of  neurohormonal  information transfer 
f rom cell surface receptors to adenylate cyclase. 
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