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The tr-subunit of RNA polymerase is responsible for promoter recognition in prokaryotes [(1969) Nature 
221, 43-46]. Alterations in the a-subunit are thought to be involved in controlling 'global' changes in gene 
expression, such as those involved in differentiation in the spore-forming bacterium Bacillus subtilis [(1981) 
Cell 25, 582-584]. Stragier et al. [(1985) FEBS Lett. 195, 3-11] have proposed that a-factors are composed 
of two domains: a C-terminal domain involved in promoter recognition and an N-terminal domain involved 
in interactions with RNA polymerase. We have sequenced another developmental gene from B. subtilis, 
spollIC, and the strong homology of its predicted product suggests that it too may be a a-factor. However, 
the spollIC product is small and lacks completely the conserved N-terminal domain of the ~r-subunits. I 
propose that the product of the spollIC gene may carry out the DNA-recognition functions of a a-factor 

but that it probably requires an auxiliary factor to interact with core RNA polymerase. 

RNA polymerase; Sigma factor; Sporulation; (Bacillus subtilis) 

1. I N T R O D U C T I O N  

A single type of  RNA polymerase is responsible 
for transcription in prokaryotes.  The catalytic core 
enzyme is composed of  four large subunits" two ~- 
subunits (Mr - 40000),/3- (Mr - 155 000) a n d ~ " -  
(Mr - 160000). Initiation of  transcription is con- 
trolled by a fifth subunit, a, which is not required 
for  elongation and which dissociates f rom the 
complex soon after initiation. In Bacillus subtilis, 
in addition to the major  form of  a found in 
vegetative cells (a43), a number  of  minor forms 
have been identified by their st imulatory effect on 
transcription f rom specific promoter  sequences in 
vitro [4-7]. Others have been tentatively identified 
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on the basis of  strong homologies between their 
predicted amino acid sequences and those of  
known a-subunits [8]. Although B. subtilis has by 
far the widest range of  known a forms at the mo- 
ment,  multiple forms of a have been identified in 
other prokaryotes,  notably Escherichia coli and 
Klebsiella, where they have been shown to control 
genes involved in the heat-shock response and in 
nitrogen regulation [9]. The major  form of  a is 
highly conserved in B. subtilis and E. coli [10]. On 
the basis of  a comparison of the sequences of  these 
and related a-factors,  Stragier et al. [3] have 
recently proposed that there are two conserved 
functional domains in a-factors.  The C-terminal 
conserved domain contains the consensus a-helix- 
turn<e-helix motif ,  which is characteristic of  a 
range of  prokaryotic proteins capable of  site- 
specific DNA-binding [11]. The presence of  this 
structure prompted Stragier et al. [3] to propose 
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that the C-terminal domain of  the ~r-factors is in- 
volved in promoter recognition. By elimination, 
Stragier et al. [3] also proposed that the conserved 
N-terminal domain might be involved in interac- 
tions with core RNA polymerase. More recently, a 
region of  ~r30 involved in recognition of the ' - 10' 
region of  the spo VG promoter has been identified 
by the location of  an amino acid alteration that 
suppresses a specific promoter-down mutation 
(Losick, R., personal communication). The con- 
served ce-helix-turn-oe-helix motif near the C- 
terminus of  the ~r-factors is thus now thought to be 
involved specifically in the recognition of  ' - 3 5 '  
promoter sequences. 

It seems likely that development in B. subtilis is 
controlled, at least in part, by changes in the ~r- 
subunit of  RNA polymerase [2]. Many of  the 
regulatory genes involved in this process have been 
identified by the sites of  mutations (spo) that have 
a highly pleiotropic effect, often causing a com- 

plete block in development [12]. However, only 
three of  the 23 or so spo genes that have been se- 
quenced so far appear to encode ~r-factors, on the 
basis of  either sequence homology or function 
[13]. As part of  a continuing effort to identify the 
functions and regulation of  the spo genes, we have 
recently characterised, in terms of  expression and 
nucleotide sequence, the spolI IC gene ([14], Er- 
rington, J., Rong, S., Rosenkrantz, M.S. and 
Sonenshein, A.L.,  submitted). In this report I 
discuss the relationship between the predicted 
product of  the spolI IC gene and the family of  ~r- 
factors and its implications for ~r-function. 

2. RESULTS AND DISCUSSION 

The predicted product of  the spolIIC gene (Er- 
rington, J., Rong, S., Rosenkrantz, M.S. and 
Sonenshein, A.L.,  submitted) was compared with 
the NIH Protein Sequence Database and a single 
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Fig. 1. Alignment of six a-like proteins from B. subtilis. The standard one-letter amino acid notation is used. Numbers 
at the beginning of each line refer to the first amino acid residue in that line. Gaps, indicated by hyphens, were intro- 
duced to maximise the alignment. A solid bar overlies the conserved o~-helix-turn-o~-helix motif characteristic of many 
prokaryotic DNA-binding proteins and thought to be involved in recognition of the - 35 regions of promoters. The 
asterisk indicates the location of the threonine to isoleucine alteration that may indicate the location of a - 10 promoter 
specificity determining region in ~r3o (Losick, R., personal communication). Vertical lines of amino acids are boxed when 
the majority of members in a line are identical or represent conservative substitutions. Conservative substitutions are 
defined as those involving pairs of amino acids from the following groups: A and G; D and E; F and Y; I, L, M and 
V; K and R; N and Q; S and T. Sequence information was taken from the following references [8,10,19-21]. The 030 

sequence is that of B. licheniformis and was kindly provided by Dr I. Smith. 
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significant homology was obtained to the major 
form of  0.-factor from E. coli. The major form of  
0. found in vegetative cells of  B. subtilis and the 
other minor forms of 0. in this organism were not 
included in the database but examination of their 
sequences indicated that the spoIllC product was 
also homologous to them. A preliminary align- 
ment was obtained by analysis of  each pair of  pro- 
tein sequences in turn by a dot-matrix computer 
programme, DIAGON [15]. The programme 
ALIGN (the alignment score programme of  the 
Protein Identification Resource) was then used to 
compare each pair of  sequences with regard to the 
significance of  the homology and to determine the 
introduction of  gaps. The spoIIIC product showed 
significant homology to all of  the sequences. For 
example, the mean alignment score for 100 ran- 
dom sequences of the same length and composition 
as the products of  spolIIC (all residues) and 
spolIG (residues 113-239) was 816.04, with a stan- 
dard deviation (SD) of  15.58. The score for the 
aligned proteins was 1019, 13.03 SDs above the 
mean score, indicating a highly significant similari- 
ty between the sequences ( P <  10-6). It is clear 
f rom the alignment shown in fig. 1 that the spolIIC 
product  is very closely related to the family of  
genes. It aligns particularly well with the o29 se- 
quence throughout its length, except for 6 residues 
at the N-terminus and 12 at the C-terminus. It was 
not necessary to introduce any gaps between 
residues in order to align this pair of  sequences. 
We have previously commented upon the extensive 
gene duplication that is evident now that a number 
of  developmental genes in B. subtilis have been 
characterised [8]. The structure of  spolIIC is 
highly suggestive of  an origin by partial gene 
duplication, and spolIG (encoding 0"29) s eems  the 
most likely candidate for an immediately ancestral 
gene. The spoIIIC sequence is, however, unusual 
in that it is much shorter than the other 0.-subunits; 
of  the two putative domains distinguished in this 
family of  proteins (see above), it contains only the 
C-terminal segment. Nevertheless, the spolIIC 
product  must be functional, as mutations in it have 
very strong pleiotropic effects on sporulation [12]. 
It thus seems likely that the putative C-terminal 
region of  the 0.-subunits does represent a separate 
domain and it is presumably responsible for pro- 
moter recognition by site-specific DNA-binding. 
Note that the threonine to isoleucine alteration 

that confers an altered - 1 0  promoter specificity 
on o~3o (see above and fig.l) lies within the region 
of  homology to the predicted spolIIC product, 
though rather near its N-terminus. The fact that 
the predicted product shows strong homology to 
the other 0.-subunits throughout its length suggests 
that its function is specifically related to that of  the 
0.-factors, rather than to the general class of DNA- 
binding proteins: activators and repressors. 

One way to avoid the problem of core 
polymerase interaction by the rather truncated 
spolllC product, if that is the function of  the miss- 
ing N-terminal domain, would be to suppose that 
it interacts with a second protein capable of  
mediating this function. Support for the concept 
of  separating the host 0.-factors into two com- 
ponents is provided by bacteriophage SPO1 of  B. 
subtilis, in which the 'late' genes are controlled by 
the products of two genes, 33 and 34, that act 
synergistically with 0.-like activity [16]. However, 
neither of  these products resembles that of  spolIIC 
in overall structure. 

On the assumption that the proposed model is 
correct, which other sporulation gene products 
might interact with that of  spollIC? Although 
none of  the sporulation genes that have been se- 
quenced appear to have a suitable structure, muta- 
tions in several distinct developmental genes, 
spolVC, spolVD and spolVE, give phenotypes 
that are indistinguishable from those produced by 
spolIIC mutations [12], as might be expected if 
one or more of  their gene products were to act in 
concert with that of  spo11IC. Clarification of  the 
true relationships between the products of  these 
genes must, however, await their characterisation 
in molecular terms but at least one of  them, 
spolVC, has been cloned by several groups [17,181. 
The separation of 0.-polypeptides into two domains 
capable of  acting independently would further 
complicate the problem of  developmental gene 
regulation in B. subtilis and may have important 
implications for studies of  gene regulation in other 
prokaryotes. 

ACKNOWLEDGEMENTS 

I thank Drs R. Losick and I. Smith for com- 
municating their results prior to publication, and 
Professor J. Mandelstam, Dr P. Butler, Dr M.D. 
Yudkin and Dr A.L. Sonenshein for helpful com- 

259 



Volume 224, number 2 FEBS LETTERS November 1987 

ments and criticisms. I am grateful to the Royal 
Society for a Research Fellowship and to the SERC 
for funding. 

REFERENCES 

[1] Burgess, R.R., Travers, A.A., Dunn, J.J. and 
Bautz, E.K.F. (1969) Nature 221, 43-46. 

[2] Losick, R. and Pero, J. (1981) Cell 25, 582-584. 
[3] Stragier, P., Parsot, C. and Bouvier, J. (1986) 

FEBS Lett. 195, 9-11. 
[4] Haldenwang, W.G. and Losick, R. (1980) Proc. 

Natl. Acad. Sci. USA 77, 7000-7004. 
[5] Wiggs, J.L., Gillman, M.Z. and Chamberlin, M.J. 

(1981) Proc. Natl. Acad. Sci. USA 78, 2762-2766. 
[6] Haldenwang, W.G., Lang, N. and Losick, R. 

(1981) Cell 23, 615-624. 
[7] Carter, H.L.iii and Moran, C.P.jr (1986) Proc. 

Natl. Acad. Sci. USA 83, 9438-9442. 
[8] Errington, J., Fort, P. and Mandelstam, J. (1985) 

FEBS Lett. 188, 184-188. 
[9] Doi, R.H. and Wang, L.-F. (1986) Microb. Rev. 

50, 227-243. 

[10] Gitt, M.A., Wang, L.-F. and Doi, R.H. (1985) J. 
Biol. Chem. 260, 7178-7185. 

[11] Pabo, C.O. and Sauer, R.T. (1984) Annu. Rev. 
Biochem. 53, 293-323. 

[12] Piggot, P.J. and Coote, J.G. (1976) Bact. Rev. 40, 
908-962. 

[13] Mandelstam, J. and Errington, J. (1987) Microb. 
Sci. 4, 238-244. 

[14] Turner, S.M., Errington, J. and Mandelstam, J. 
(1986) J. Gen. Microbiol. 132, 2995-3003. 

[15] Staden, R. (1982) Nucleic Acids Res. 10, 
2951-2961. 

[16] Tjian, R. and Pero, J. (1976) Nature 262, 753-757. 
[17] Fujita, M. and Kobayashi, Y. (1985) Mol. Gen. 

Genet. 199, 471-475. 
[18] Errington, J. and Jones, D. (1987) J. Gen. 

Microbiol. 133,493-502. 
[19] Binnie, C., Lampe, M. and Losick, R. (1986) Proc. 

Natl. Acad. Sci. USA 83, 5943-5947. 
[20] Fort, P. and Piggot, P.J. (1984) J. Gen. Microbiol. 

130, 2147-2153. 
[21] Stragier, P., Bouvier, J., Bonamy, C. and 

Szulmajster, J. (1984) Nature 312, 376-378. 

260 


