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The amino acid sequences of three extremely acidic ribosomal proteins, $6, S12, and S l5. from Halobacte- 
rium marismortui have been determined. The sequences were obtained by the sequence analysis of peptides 
derived by enzymatic digestion with trypsin. Stapylococcus aureus protease and chymotrypsin, as well as 
by cleavage with dilute HC1. The proteins, $6, S12 and S15, consist of 116, 147 and 102 amino acid residues, 
and have molecular masses of 12251, 16440 and 11747 Da, respectively. Comparison of the amino acid 
sequences of these proteins with ribosomal protein sequences of other organisms revealed that halobacterial 
protein $12 has homology with the eukaryotic protein S I6A from Saccharomyces cerevisiae, while S15 is 
significantly related to the Xenopus laevis S19 protein. No homology was found between these halobacterial 

proteins and any eubacterial ribosomal proteins. 
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1. INTRODUCTION 

Halobacteria, as the name indicates, are 
organisms living in a very high salt environment. 
They are phylogenetically grouped into the pro- 
posed third kingdom, archaebacteria, because of  
some of  their biochemical traits [1]. The 
halobacterial ribosomes possess several 
characteristics which distinguish them from those 
of  other organisms. Firstly, they require high salt 
concentrations to maintain stable 70 S, 50 S and 30 
S particles [2] and to produce full functions [3]. 
When ribosomes are suspended in low-ionic 
strength buffers, most of the proteins are released 
from the ribosomal RNA (rRNA) core. Secondly, 
it is well known that ribosomal proteins from 
nonhalophiles are mostly basic and that this 
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character of ribosmal proteins probably plays an 
important role in the interaction with rRNAs. In 
contrast, most, if not all, of the halophilic 
ribosomal proteins are acidic, having average 
isoelectric points of  3.9 [2]. These findings suggest 
that the structures of  halophilic ribosomal proteins 
and the mechanisms by which the proteins interact 
with rRNAs have undergone drastic changes in 
adapting to extreme halophilic environments. 
Thirdly, halobacterial ribosomes share both the 
eukaryotic and eubacterial features: the amino 
acid sequences of  proteins S14 and S16 from 
Halobacter ium marismortui  30 S ribosome 
subunits [4], of  the A-protein from H. cutirubrurn 
ribosomes [5], and of a number of 5 S rRNAs from 
halophilic ribosomes [6] show more relatedness to 
the eukaryotic counterparts than to the eubacterial 
ones. On the other hand, the primary and secon- 
dary structures of  the 16 S rRNA from halo- 
bacterial ribosomes and their gene organization 
appear to be more similar to the eubacterial 
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counterparts than to eukaryotic ones [7-9]. The 
halophile ribosomes, therefore, seem particularly 
interesting for studies, not only on the molecular 
basis of  the adaptat ion to an extreme halophilic en- 
vironment,  but also should give insight into the 
molecular evolution of the ribosomal proteins. 

In recent analyses, we have determined the com- 
plete amino acid sequences of  four ribosomal pro- 
teins: S l l ,  S14, S16 and S17, f rom 30 S subunits 
of  H. marismortui [4,10,11]. These results allowed 
us to identify unambiguously the corresponding 
proteins from either eubacterial and /or  eukaryotic 
ribosomes, and also to evaluate the evolutionary 
changes in amino acid sequences between halo- 
philic and nonhalophilic ribosomal proteins. Here, 
we have extended this information through the se- 
quence determination of  three extremely acidic 
r ibosomal proteins, $6, S12 and S15 from H. 
marismortui,  and compared their sequences with 
those of  ribosomal proteins of  other organisms. 

2. MATERIALS AND METHODS  

2.1. Purification o f  ribosomal proteins 
Ribosomal proteins $6, S12 and S15 of H. 

marismortui were extracted f rom 30 S subunits and 
then separated on DEAE-cellulose column 
chromatography as described in [10]. 

2.2. Sequence determination 
The proteins were cleaved enzymatically with 

trypsin, chymotrypsin,  and Staphylococcus aureus 
protease, as in [12], and some peptides were 
cleaved at aspartyl residues with dilute acid (220/A 
concentrated HC1 was diluted to 100 ml with 
deionized and Millipore filtered water, pH 2 + 
0.04) using the procedure of  Inglis [13]. The 
resulting peptides were separated by a finger- 
printing method [12] or on reverse-phase H P L C  
with a Vydac C 18 column using an acetonitrile gra- 
dient in 0.1% trifluoroacetic acid, and effluents 
were monitored by absorption at 220 nm. Amino 
acid analyses were performed on an H P L C  system 

using o-phthaldialdehyde as a derivatized reagent 
[14]. Sequence determination was carried out by 
the D A B I T C / P I T C  double-coupling method [15]. 
The amino-terminal sequences and some long pep- 
tides were sequenced with a solid-phase sequencer 
(LKB 4020) as described in [12]. 

2.3. Computer  analysis 
The amino acid sequences of  proteins $6, S12 

and S15 were compared to all r ibosomal proteins 
included in the NBRF Protein Sequences Database 
(release 11, December,  1986) and also to the amino 
acid sequences of  ribosomal proteins in our own 
file, with program RELATE and A L L I G N  [16] on 
a V A X / V M X  computer.  Hydropathic  analyses 
were performed with the program P E P P L O T  [17] 
included in U W G C G  (University of  Wisconsin 
Genetics Computer  Group,  Version 4.1, August 
1986). 

3. RESULTS AND DISCUSSION 

3.1. Sequence determination 
The complete amino acid sequences of  ribo- 

somal proteins $6, S12 and S15 from H. marismor- 
tui are presented in fig. 1. The sequences have been 
derived mainly by sequence analysis of  tryptic pep- 
tides, which were aligned by sequencing overlap- 
ping peptides f rom S. aureus protease digestion of  
the proteins. Other sequence information was ob- 
tained from chymotryptic peptides of  the proteins, 
and f rom thermolytic and acid cleavage of  the pep- 
tides. The resultant sequence information 
established the complete pr imary structures of  the 
proteins, as shown in fig.1. 

Problems in these analyses were encountered at 
the amino-terminal region of  the S12 protein due 
to the occurrence of  consecutive proline residues at 
positions 7 and 8, which tend to cause incomplete 
Edman degradations. Further, extended sequence 
determination of the carboxyl-terminal region of  
$6, through the tryptic peptide T6 and S. aureus 
protease peptide SP11, proved to be difficult due 

Fig. 1. Amino acid sequences of proteins $6 (A), S12 (B) and S15 (C) from H. marismortui. SEQ indicates degradations 
of intact protein. TRY, SP and CHY designate peptides derived from digestions of proteins with trypsin, S. aureus pro- 
tease and chymotrypsin, respectively. TRY-AP and TRY-TH indicate peptides obtained by acid cleavage and ther- 
molytic digestion of tryptic peptides, respectively. Arrows (.-.~) indicate the cycles of the DABITC/PITC 

double-coupling method or solid-phase Edman degradations. 
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to the large size of  the peptides. The sequences 
were finally determined with smaller subdigested 
peptides produced by acid cleavage and ther- 
molytic digestion of  peptide TI in S12, and by acid 
cleavage of peptide T6 in $6, as shown in fig. 1. In 
addition, the Trp-44 residue in protein S12 was 
identified by the optical absorbance of tryptic pep- 
tide T3, although the Edman degradation of the S. 
aureus protease peptide SP4 could yield no amino 
acid at residue 44 in the S12 protein. 

The amino acid compositions of  the three pro- 
teins and their molecular masses calculated from 
the primary structures are given in table 1. The 
amino acid compositions derived from the se- 
quence data are in good agreement with those from 
the amino acid analyses of  the hydrolysed proteins 
(table 1). 

The three proteins contain a large number of 
acidic amino acids randomly distributed 
throughout the molecules. From the number of 
acidic and basic residues in the three proteins, net 

charges of - 18, - 10.5 and - 12 are calculated for 
$6, S12 and S15, respectively, assuming that the 
His residue carries a charge of +0.5 [18]. 

Examination of  the amino acid sequences for 
hydropathy revealed a general hydrophilic 
character of the proteins. In particular, the amino- 
terminal region (positions 20-45) in $6, the central 
20 residues (positions 70-90) in S12 and the 
carboxyl-terminal 30 amino acid residues in S15 
are predominantly hydrophilic. Presumably, these 
hydrophilic regions might be involved in structural 
stabilization of  the protein in the presence of  the 
high molarity of the cytoplasmic salt. 

3.2. Sequence comparison 
The complete amino acid sequences of  the three 

proteins studied in this paper were compared with 
other ribosomal protein sequences using the 
Dayhoff  programs, as described in section 2. First, 
the comparison of the three proteins with 
eubacterial ribosomal proteins, including all 52 E. 

Table 1 

Amino acid compositions and molecular masses of proteins $6, S12 and S15 from H. marismortui 

Amino acid Protein 

$6 S12 S15 

Sequence Hydrolysate Sequence Hydrolysate Sequence Hydrolysate 

Asp 12 18.0 
Asn 1 
Thr 7 5.3 
Ser 3 2.9 
Glu 15 22.0 
Gln 3 
Pro 5 n.d. 
Gly 8 6.4 
Ala 18 20.0 
Val 15 14.9 
Met 1 0.9 
Ile 5 4.7 
Leu 8 8.0 
Tyr 1 1.0 
Phe 4 5.1 
His 2 1.9 
Lys 5 3.4 
Arg 3 3.1 
Trp 0 n.d. 

Total 116 

Mr 12 251 

13 17.0 12 16.0 
3 4 

15 12.9 5 5.1 
6 5.9 3 2.9 

17 20.8 15 17.5 
5 1 
7 n.d. 3 n.d. 

12 12.7 3 3.0 
12 11.5 9 10.6 
9 7.3 10 10.4 
0 0 4 2.9 
3 2.3 5 5.4 

16 14.0 6 6.0 
5 4.6 3 3.7 
2 2.7 2 2.6 
1 1.0 4 2.9 
5 5.0 6 4.8 

14 14.2 7 5.3 
n.d. 0 n.d. 

102 

11 747 

147 

16 440 

68 



Volume 224, number 1 FEBS LETTERS November 1987 

H.maris. $6 68 
E.coli S~ 191 

F V E  G H  A G  E V  S 107 
DIG VlDIFIV I P G N - 220 

Fig.2. Sequence homology of regions in the H. marismortui protein $6 (positions 68-107) and the E. coli protein $2 
(positions 191-220). The sequence stretches were aligned with the program ALIGN using the mutation data matrix with 

a break penalty of 10. 

coli proteins, was performed with the program 
RELATE (segment length 20). The segment com- 
parison score thus obtained suggested a possible 
relatedness for only one protein pair, namely $6 
f rom H. marismortui  and $2 f rom E. coli 
r ibosomes (at the level of  3.579 SD units). 
However,  in this case, further analysis using the 
program A L I G N  revealed that the homology was 
restricted to only one part,  giving the alignment 
score of  2.11, as presented in fig.2, and that long 
insertions and deletions are required to align two 
protein chains for a maximum homology. There- 
fore, the relatedness of  the two proteins obtained 
by the program RELATE seems to be somewhat 
uncertain. 

Further sequence homology search with the seg- 
ment length of  10 residues did not reveal a signifi- 

A 
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Ycast 
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cant relation to any eubacterial r ibosomal protein 
sequences. Hence, the three proteins cannot be 
correlated to any eubacterial r ibosomal proteins. 
On the other hand, in previous studies, four ribo- 
somal proteins, S l l ,  S14, S16 and S17, f rom H. 
marismortui  were found to be homologous to 
eubacterial r ibosomal proteins [4,10,11]. This 
finding suggests that the amino acid residues of  the 
highly acidic proteins described here may have 
been drastically substituted during evolution. 

The sequences of  the three proteins $6, S12 and 
S15 were also compared with those of  eukaryotic 
r ibosomal proteins. This comparison demon- 
strated that S12 f rom H. marismortui  exhibits a 
significant homology to the yeast S. cerevisiae 
r ibosomal protein S16A [19] at the level of  12.086 
SD units, and that H. marismortui  S15 appears to 
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Fig.3. Comparison of the primary structures of S12 and S15 from H. marismortui ribosomes with ribosomal proteins 
from eukaryotes. (A) Alignment of ribosomal protein S12 from H. marismortui (HS12) with protein S16A from S. 
cerevisiae (YS16A) [19]. (B) Alignment of ribosomal protein S15 from H. marismortui (HS15) with protein S19 from 
X. laevis (XS19) [20]. The sequences were aligned with the program ALIGN using the mutation data matrix with a break 

penalty of 20. 
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be related to the Xenopus laevis ribosomal protein 
S19 [20], giving 9.124 SD units. Accordingly, H. 
marismortui proteins S12 (HS12) and S15 (HSI5) 
were aligned with yeast protein S16A (YSI6A) and 
X. laevis S19 (XS19) for a maximum homology by 
the program ALIGN,  as given in fig.3. This com- 
parison shows that HS12 and HS15 can easily be 
aligned to proteins YS16A and XS19, respectively, 
with a few insertions and deletions. Protein HS12 
has 35% identical residues (ALIGN score: 23.26) 
with YS16A, and HS15 shares 24°7o identical 
residues with XS19 (ALIGN score: 12.88). This is 
strong statistical evidence that HS12 and HS15 are 
related to YS16A and XS19, respectively, since two 
proteins which give an A L I G N  score of  more than 
3.0 SD units are considered to be strongly related 
to each other [16]. 

There is no indication f rom our computer  search 
programs that protein $6 is homologous to any of 
the known eukaryotic or eubacterial r ibosomal 
proteins. However,  it is possible that this negative 
finding is due to insufficient sequence data for 
eukaryotic r ibosomal proteins, and that protein $6 
might be related to a eukaryotic protein whose se- 
quence has not yet been sequenced. 

Although it is still premature at present for any 
definite conclusions concerning the evolutional 
relationship of  halophilic ribosomal proteins, the 
results from both the present and previous analyses 
[4,5] indicate that the primary structures of  
halobacterial r ibosomal proteins appear to be 
more related to eukaryotic than to eubacterial pro- 
teins. On the other hand, it is well known that the 
size of  the chromosomal  DNA and the gene 
organization in halobacteria are of  the eubacterial 
type [7-9]. This observation suggests that a 
divergence of  the ribosomal proteins into the 
eubacterial, halobacterial (archaebacteria) and 
eukaryotic type had taken place before divergence 
of  the 'urkaryotes '  occurred, possibly by drastic 
genetic events, e.g. by gene duplications. Further 
comparat ive sequence studies on ribosomal pro- 
teins, especially f rom archaebacteria, will provide 
more valuable information on the molecular evolu- 
tion of  ribosomes. 
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