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The contents of the mRNAs encoding the y- and E-subunits of the nicotinic acetylcholine receptor as well 
as the single-channel properties of the receptor have been assessed in innervated, denervated and reinnervat- 
ed rat muscle. The changes in abundance of the ),- and E-subunit mRNAs correlate with the changes in rela- 
tive density of two classes of acetylcholine receptor channels. The results support the view that a switch 
in the relative abundance of the y- and E-subunit mRNAs is a major mechanism in regulating the properties 

of acetylcholine receptor channels in muscle. 

Acetylcholine receptor; Denervation; Reinnervation; RNA blot hybridization analysis; Patch-clamp analysis; 
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1. I N T R O D U C T I O N  

Acetylcholine receptors (AChR) are distributed 
throughout  the developing skeletal muscle cell sur- 
face, but become highly concentrated at the neuro- 
muscular junction in the innervated adult muscle. 
Concomitantly,  AChRs become metabolically 
stable and their channel properties change [1,2]. In 
bovine muscle, a developmentally regulated switch 
has been found in the expression of  two types of  
AChR channels, which have different functional 
properties and which are composed of  the or-, ~-, 
7- and ~-subunits or of  the or-, ~'-, e- and ~-subunits 

Correspondence address: V. Witzemann, Abteilung 
Neurochemie, Max-Planck-Institut ffir biophysikalische 
Chemie, D-3400 G6ttingen, FRG 

Abbreviations: AChR, acetylcholine receptor; ACh, 
acetylcholine 

The nucleotide sequence presented has been submitted to 
the EMBL/GenBank database under the accession 
number Y00696 

[3]. Denervation results in a large increase of  newly 
synthesized AChRs,  which become mostly incor- 
porated into extrasynaptic regions. These AChRs 
have distinct biophysical properties and appear to 
be biochemically different f rom junctional AChRs 
[1,2]. To investigate the mechanism by which the 
motor  nerve controls the expression of  the dif- 
ferent forms of AChR channels, we have now 
measured the contents of  the mRNAs encoding the 
7- and e-subunits of  the AChR in innervated, 
denervated and reinnervated rat muscle. The 
changes in abundance of  the 7- and e-subunit 
mRNAs  are found to correlate with the changes in 
relative density of  the two classes of  AChR chan- 
nels. 

2. MATERIALS AND M E T H O D S  

The rat genomic DNA library used was a collec- 
tion of  recombinant phages that carried rat liver 
DNA fragments generated by partial digestion 
with Sau3AI and joined to the arms of  AEMBL3 
[4] digested with BamHI.  Phages were screened [5] 
by hybridization in situ at 60°C. The hybridization 
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probe used for initial screening was a mixture of 
the PstI(- lO0)/HindIII(1181) fragment (numbers 
indicating the 5'-terminal nucleotide generated by 
cleavage) excised from the plasmid pSPc-r [6,7] 
carrying the bovine 7-subunit cDNA and the 
BamHI (on vector)/EcoRI(1444) fragment derived 
from the plasmid pSPc~ [7] carrying the bovine e- 
subunit cDNA. Hybridization-positive clones were 
isolated by repeated plaque purification. Frag- 
ments of the genomic DNAs isolated were sub- 
cloned in the plasmid pUC19 [8]. The 
AatI(530)/RsaI(757) fragment of the bovine 7- 
subunit cDNA [6] and the EcoRV(520)/AccII(737) 
fragment of the bovine c-subunit cDNA [7] were 
used as probes corresponding mainly to exon P7 of 
the human "r-subunit gene [9]. DNA blotting 
analysis was carried out as in [10]. All hybridiza- 
tion probes were labelled with [~-32p]dCTP by 
nick-translation [11]. DNA sequencing was carried 
out by the method of Maxam and Gilbert [12]. 

Diaphragms of female Wistar rats (150-300 g) 
were frozen in liquid nitrogen immediately after 
dissection. Total RNA was extracted by the 
guanidinium isothiocyanate method as detailed in 
[13]; in some experiments, poly(A) ÷ RNA was 
isolated as in [13]. Samples of RNA (15/zg each) 
were denatured with 1 M glyoxal and 50% di- 
methyl sulphoxide [14], electrophoresed on 1.5% 
agarose gels and transferred [15] to Biodyne nylon 
membranes (Pall). Hybridization was carried out 
according to Thomas [15] and as detailed in [3]. 
The specific activity of the e-subunit-specific probe 
( - 2 - 4 ×  l0 s dpm//zg) was about 2-fold higher 
than that of the 7-subunit-specific probe 
( -  1-2 x l0 s dpm//~g). Increasing amounts (2-15 
/zg) of total RNA isolated from 7 day denervated 
rat diaphragm showed, using the same blot for 
hybridization with the ~- and e-subunit-specific 
probes, a linear increase in specific hybridization 
signals. The chicken/3-actin cDNA probe used was 
a - 2  kilobase pair (kb) insert excised with PstI 
[16]. The size markers used were rat and 
Escherichia coil ribosomal RNAs. 

Denervation was performed by cutting the 
phrenic nerve innervating the left hemidiaphragm. 
In some experiments, hemidiaphragms denervated 
for 7 days were divided into three parts: a central 
part containing the former end-plates (end-plate- 
rich region) and two adjacent parts extending to 
the tendinous and rib insertion (end-plate-flee 

region); each part was 5-8 mm in width. The ex- 
tent of the end-plate-rich region was assessed in 
control strips by staining for acetylcholine esterase 
activity. The time course of reinnervation follow- 
ing mechanical crushing of the left phrenic nerve 
by a pair of forceps was examined in 13 ex- 
periments which were performed between days 5 
and 30 after nerve crushing. A fibre was con- 
sidered as being reinnervated when spontaneously 
occurring miniature end-plate potentials were 
observed at a rate > 0.5/min. A strip was regarded 
as reinnervated when at least 90% of all fibres ex- 
amined within the strip were reinnervated. 
Separate muscle preparations were used for elec- 
trophysiological experiments and RNA blot 
hybridization analysis. 

Electrophysiological measurements on normal 
fibres were made on omohyoid muscle (female 
Wistar rats, 120-150 g). End-plates were identified 
visually at x 250 magnification and all records 
were made on a perisynaptic membrane located 
within 20/zm of the ovoid-shaped end-plates. 
Measurements on denervated fibres were made on 
the left hemidiaphragm on the end-plate-flee 
region 5-8 mm away from the former end-plates. 
Muscles were denervated by cutting the phrenic 
nerve 7-9 days before the experiment. Muscles 
were dissected to a sheet consisting of 3-5 layers of 
fibres and then incubated for 2-3 h in minimal 
essential medium (Gibco) containing 0.5 mg/ml 
collagenase (Sigma, type I). For current measure- 
ments, muscles were maintained in rat Ringer's 
solution (in mM): 140 NaCI, 4 KCI, 1 CaCI2, 1 
MgCI2, 10 Hepes (pH 7.2). The patch pipette solu- 
tion contained (in mM): 150 NaCI, 1 BaCI2, 10 
Hepes (pH 7.2). In all experiments, 0.5/tM acetyl- 
choline (ACh) was added to the pipette solution to 
activate AChR channels. All experiments were per- 
formed at 20 _+ I°C. Conventional patch-clamp 
techniques [17] and standard methods for analysis 
were used. For the determination of average cur- 
rent durations, the time course fitting method [18] 
was employed. In all records, the distribution of 
current durations was characterized by two com- 
ponents. The amplitude and time constant of the 
two components were fitted using the maximum 
likelihood method [18]. The average current dura- 
tions given in the text refer to the slower, main 
component of the distributions and were measured 
between -75  and -95  mV membrane potential. 
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3. RESULTS AND DISCUSSION 

A rat genomic DNA library, constructed in the 
bacteriophage A derivative EMBL3 [4],  was 
screened for phage carrying AChR 7- or e-subunit 
gene sequences by hybridization with the cor- 
responding bovine muscle cDNAs [6,7]. From 

isolated. One of these clones (ArACR3,25), carrying 
a - 19-kb DNA insert, hybridized with the bovine 
y-subunit cDNA probe, and another (MACRel), 
carrying a -2~3-kb DNA insert, hybridized '~ith 
the bovine e-subunit cDNA probe. A 4.1-kb 

ffrom clotte ~trACR;v25 a~td a 2.4-kb BcmHI [rag- 
ment from clone ArACRel were shown by DNA 
blotting analysis [10] to hybridize strongly with the 
bovine 7- and e-subunit eDNA probes, respective- 
ly. These three fragments were subcloned in the 
plasmid pUC19 [8] for further analysis. 

A relatively large and highly conserved protein- 

P7  ~9.(. DNA blotting analysis of  the 4.[-~b 

7-subunit cDNA probe corresponding mainly to 
exon P7 of the human 7-subunit gene showed that 

tensively with the probe. Similar analysis of the 
Z.,t-i~t5 B'amf4¢ f'ragmenr from ,~rAC'I~" using a 
bovine e-subunit cDNA probe corresponding ap- 
proximately to the bovine 7-subunit exon P7 probe 

hybfidizable. The nucleotide sequences of these 
Hinfl and DdeI fragments and adjacent regions, 
together with the amino ad~d sequences deducea 
from the exonic sequences, are given in fig. 1. On 
the basis of comparing the nucleotide and the 
deduced amino acid sequences in the region of ex- 
ons P7 and P8 with the corresponding sequences 
for the mammalian AChR 7- and e-subunits and 
their coding DNAs hitherto known (see fig.1 
legend), we conclude that ArACR725 and ArACRe I 
carry ra't genomic DNA sequences encoding 'the 
AChR 7- and e-subunits, respectively. Thus, the 
HinfI fragment from ArACR725 and the DdeI 
fragment from ArACRel were used as probes for 
RNA blot hybridization analysis as described 
below. Dot hybridization analysis showed that 
these probes did not cross-hybridize with each 
other. 

Fig.2A and C represents autoradiograms of blot 
hybridization analysis of total RNA from inner- 
vated and denervated (7 days after cutting the 
nerve) rat diaphragms. In innervated diaphragm, 
the e-subunit mRNA with an estimated size of 
-1903 nucleotides is observed (fig.2A, lane a), 
whereas the y-subunit mRNA is not detectable 
~.~.3C, .k~-~e ~,~. T . ~  ~'~-~k.~ ~ . ~ - ~ -  ~ a ~ - ~ - ~ -  
ly following denervation of the muscle. The con- 
tent of the e-subunit mRNA increases only slightly 
(fig.2A, lane b), whereas an enormous increase is 
observed in the content of the 7-subunit mRNA 
with an estimated size of -2200 nucleotides 

~ke y- attd f-stthutfit tttRN&s ~n rat _d~a, nttt:agms 
denervated for different lengths of time (2-7 days) 
were estimated densitometrically from autoradio- 
grams of blot hybridization analysis (fig.2B,D). 
Assuming similar hybridization efficiencies for the 
7- and e-subunit-specific probes and correcting for 
the difference in the specific radioactivities of the 
~ ,  - f f i ~ ,  qi~ " 6 ~  ~ a g ~  "~2a "h', ? ~52,-~ ~ i -  
rated dia~nhra, gm the y-suhunit mRNA increases to 

those of the e-subunit mRNA. The results indicate 
furthermore that the synthesis of the 7-subunit 

denervation. In contrast, the content of the e- 
su6unff mffNA increases only a6our 2-~-fot'a'. 
Some blots were hybridized with a chicken ~-actin 
cDNA probe; under the hybridization conditions 

various actin mRNAs and the strong band seen 
probably represents muscle type ~-actin mRNA 
{see ]2~) and re~erences therein), q'he results 
presented in fig.2E and F show little variation in 
actin mRNA content, indicating that denervation 
exerts specific and differential effects on the levels 
of the e- and 7-subunit mRNAs. 

Merlie and Sanes [30] have reported that the ~- 
and fi-subunit mRNAs are concentrated in the 
synaptic regions of innervated mouse diaphragm 
muscle. The spatial d~slr~bufion of 'the 7- and e- 
subunit mRNAs was examined by analysing 
poly(A) + RNA from end-plate-rich and end-plate- 
free muscle strips from denervated diaphragm. 
Both mRNAs are detected in the end-plate-rich 
(fig.3A, lanes b,d) as well as in the end-plate-free 
region (fig.3A, lanes a,c), being more abundant in 
the end-plate-rich region. In both regions, the con- 
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Fig.2. Effect of denervation on the contents of the 
AChR e-subunit mRNA (A,B), 7-subunit mRNA (C,D) 
and actin mRNA (E,F) in rat diaphragm. (A,C,E) Auto- 
radiograms of RNA blot hybridization analysis using the 
e- (A) and -r-subunit-specific probes (C) and an B-actin 
cDNA probe (E). Total RNA from innervated rat dia- 
phragm (lane a) and from rat diaphragm denervated for 
7 days (lane b) was analysed. Autoradiography was per- 
formed at -70°C for 5 days (A,C) or 20 h (E) with an 
intensifying screen. The positions of rat ribosomal RNA 
are shown. (B,D,F) Changes in the contents of the e- 
subunit mRNA (B), -y-subunit mRNA (D) and actin 
mRNA (F) at different times after denervation. The ar- 
rows indicate the values measured for innervated tissues. 
Total RNA from innervated and denervated rat dia- 
phragms was subjected to blot hybridization analysis 
and the resulting autoradiograms (exposed for 20 h-5 
days) were scanned densitometrically. The relative con- 
tents of the respective mRNAs thus evaluated have been 
plotted against the time that elapsed after denervation; 
the values are normalized with respect to those obtained 
for the diaphragms denervated for 7 days. The larger 
RNA species hybridizable with the 3'- and e-subunit- 
specific probes (<10% of the total signal), which 
presumably represent incompletely spliced RNA [3,6], 
were not included for densitometric evaluation. The 
symbols represent individual samples. In each case, a 
diaphragm denervated for 7 days served as standard. For 
the analysis of the 1'- and e-subunit mRNAs, five 
separate preparations of diaphragms denervated for 7 
days were used; in the case of actin mRNA, two separate 

preparations were analyzed. 

ter~t o f ' the  7-s'abxmi't rnRNA is h:ighex 'thar~ 'tha~ o f  
the ~-s~b~arfi't rnRNA. The ~ar~e'~e~ d~sti~ra`t'ior~ o f  
AChR subunit mRNAs in denervated muscle sup- 
por ts  the notion that  they are synthesized preferen- 
tially in synapse-associated nuclei. A nonuniform 
6btr~bmion o~ ex~rajunc~fiona~ AChg, s a$~er 6ener- 
va(ton has been found us'tug e~ectron microscop'tc 
autora~liography 131). 

When the left phrenic nerve is crushed 5-8 m m  
from its entry into the muscle, reinnervation, as 
measured by recording miniature end-p~ate poten- 
tials (see section 2), begins 7-9 days later. The 
proximal two-thirds of  the hemidiaphragm are 
reinnervated completely on day 15-18 following 
nerve crushing (not shown). Fig.3B shows 
autoradiograms of  blot hybridization analysis of  

lo la i  RNA f rom rm diaphTagms excised al dif- 
ferent  dines of  reinnervation. T days aflex nerve 
crushing, the abundance of  the -r-subunit m R N A  is 
high, being comparable to that observed after  
denervation by cutting the nerve (lane d). The 
arnolD1 o~ Ibe 7~-s~b~n~I miCrA Ibereaf~ter 
decreases as ~he hemidiaphragm becomes reinner- 
rated,  and on day 30 after the crush the 7-subunit  
m R N A  is undetectable (lanes e,f). Assuming that 
reinnervation occurs on day 8 after nerve crushing, 
the increased expression of the 7-subunit m R N A  is 
switched of f  within 22 days following reinnerva- 
tion. For  the e-subunit mRNA,  slightly elevated 
levels are measured on days 7 and 14 after nerve 
crushing, again being comparable to the levels 
observed after 7 days of  denervation (lanes a,b). 
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Fig.3. (A) Distribution of the e- (a,b) and 7-subunit mRNAs (c,d) in 7 day denervated rat diaphragm. Poly(A) ÷ RNA 
(15/~g each) from the end-plate-free region (lanes a,c) and from the end-plate-rich region (lanes b,d) was subjected to 
blot hybridization analysis. The resulting autoradiograms (exposed for 24 h) are shown. Qualitatively similar results 
were obtained with total RNA (15/~g each), although the hybridization signals were weaker. (B) Changes in the contents 
of the e- and 7-subunit mRNAs in rat diaphragm during nerve regeneration. Total RNA (15/zg each) from diaphragms 
excised 7 days (lanes a,d), 14 days (lanes b,e) and 30 days (lanes c,f), after crushing the nerve was subjected to blot 

hybridization analysis. The resulting autoradiograms (exposed for 3 days) are shown. 

Later during reinnervation the amount  of  the e- 
subunit m R N A  fails back to a level representative 
of  normal  innervated muscle (lane c). Thus, 
restored synaptic function leads to complete 
repression of  y-subunit  m R N A  expression reminis- 
cent of  the change observed during development of  
bovine muscle [3]. 

Innervated and denervated muscles were exam- 
ined for the presence of  different types of  AChR 
channels. In innervated muscle, the ACh sensitivi- 
ty is restricted to the region lying within 200/~m of  
the end-plate. Fig.4A shows single-channel cur- 
rents recorded f rom a normal  fibre which represent 
openings of  a single class of  high-conductance 
(62 _+ 3 pS, mean _+ SD, n -- 8) AChR channels 
(fig.4B,C). The mean duration of  the currents is 
1.74 _+ 0.14 ms (n = 5). In all patches examined 
(n = 8), amplitude histograms are characterized by 
a single peak suggesting that  only a single class of  
high-conductance AChR channels is present in in- 
nervated muscle. In denervated muscle, ACh sen- 
sitivity has spread over the whole fibre. Fig.4D 
shows currents recorded f rom a denervated fibre in 
the end-plate-free region. The vast majori ty  of  

elementary currents are of  smaller amplitude than 
those recorded f rom normal  fibres and represent 
openings of  low-conductance (42 _+ 3 pS, n = 11) 
AChR channels (fig.4E,F). These lower amplitude 
elementary currents also have longer average dura- 
tions which vary widely between different patches 
(9.22_+4.11 ms, n = l l ;  range between 4.6 and 
18 ms). In 13 of  23 patches, the distribution of  cur- 
rent amplitudes showed an additional smaller peak 
(fig.4E) indicating that in the end-plate-free region 
of  denervated fibres high-conductance channels 
(63_+ 3 pS, 2.26_+ 0.17 ms average duration, 
n -- 4) are also present though at a very much lower 
density (fig.4F). Their average frequency of  occur- 
rence was 6.8 _+ 1.9°70 of  the total number  of  cur- 
rents observed (mean_+ SE, range 0-27o70, 23 
patches). Thus in denervated fibres, the low- 
conductance channel is much more abundant  than 
the high-conductance channel. 

The large increase in rate of  AChR synthesis 
upon denervation is well documented [1,2]. Several 
reports confirmed this finding, demonstrating a 
significant increase in AChR subunit m R N A  levels 
[19,29,32-34]. Our results indicate that the e- and 
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Fig.4. Functional properties of  AChR channels in normal and denervated muscle. (A) Single-channel currents activated 
by ACh in perisynaptic membrane of normal muscle. Membrane potential - 81 mV. Dotted line indicates average cur- 
rent amplitude of 4.4 pA. (B) Amplitude distribution of  ACh-activated currents in normal fibre. - 81 mV. Gaussian 
fit indicates mean amplitude of  4.65 _+ 0.16 pA. (C) Current-voltage (i-V) relation of ACh-activated channels in normal 
fibre. The conductance of  the end-plate channel (62 pS) is obtained by linear regression as indicated by the straight line. 
(D) Single-channel currents activated by ACh in denervated fibre (7 days after cutting phrenic nerve). Recording from 
end-plate-free region. Membrane potential - 80 mV. Dotted lines represent average sizes of two classes of currents of 
3. l and 4.4 pA, respectively. Same scales as in (A). (E) Amplitude distribution of  ACh-activated currents in denervated 
fibre. - 8 0 m V .  Two well-separated peaks fitted by Gaussians have mean amplitudes of  3.05+_0.10 and 
4.41 +_ 0.13 pA, respectively. (F) Current-voltage relations of  ACh-activated channels in denervated fibre. Filled sym- 
bols represent the i- V relation of  the more frequently occurring, low-conductance channel. Open symbols represent the 
i- V relation of the less frequently occurring, larger conductance channel. Linear regression lines indicate channel con- 

ductances of 43 and 65 pS, respectively. 
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7"-subunit mRNAs are regulated differentially. The 
E-subunit mRNA level is relatively independent of  
denervation or reinnervation of  adult muscle, 
whereas the 7"-subunit mRNA level is under tight 
control of  the motor nerve, being low when the 
muscle is innervated and being high when it is not 
innervated. A major mechanism that determines 
the expression of  the two different classes of  
AChR channels in muscle is a switch in the relative 
abundance of  the 7"- and E-subunit mRNAs. In in- 
nervated muscle where only the e-subunit mRNA is 
found, the high-conductance channel ( - 6 0  pS) is 
exclusively observed. In denervated muscle, both 
the 7"- and E-subunit mRNAs are present, but the 7"- 
subunit mRNA is much more abundant.  Con- 
comitantly, the low-conductance channel 
( - 4 0  pS) predominates. 
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