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The N-glycosidic carbohydrate chains of hemocyanin from the spiny lobster Panulirus interruptus were lib- 
erated by hydrazinolysis of a pronase digest and subsequently reduced. Separation of the mixture of 
oligosaccharide-alditols by high-voltage paper electrophoresis resulted in a neutral (90%) and an acidic (10%) 
fraction. SOO-MHz ‘H-NMR spectroscopy of the acidic fraction revealed a single component with the fol- 
lowing novel structure: 
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1. INTRODUCTION 

Hemocyanins are high-M, copper-containing 
oxygen-transport proteins, which are found in the 
hemolymph of some arthropods and molluscs. It 
has been shown that interesting species-specific 
differences in carbohydrate chains occur among 
the hemocyanins in both phyla [l-5]. The hemo- 
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cyanin from the spiny lobster Pant&us interrup- 

tus is an N-glycoprotein, having a carbohydrate 
content of 1.5% with Man and GlcNAc as the only 
constituting monosaccharides (51. Recently, the 
primary structures of the neutral carbohydrate 
chains were established to be Mancu( l-6)[GlcNAq3 
(1-2)Mana( 1-3)]Man,B( l-4)GlcNAc/3( l-4)GlcNAc 
and Mancr(l-6)[Manar(l-3)JManLu(1-6)[Mana 
(l-3)]Man,&( l-4)GlcNA@( I-4)GlcNAc [5]. Here, 
the structural characterization of the acidic carbo- 
hydrate material, representing 10% of the carbo- 
hydrate part, is described. 

2. MATERIALS AND METHODS 

The preparation and isolation of the acidic car- 
bohydrate fraction from a hydrazinolysate of the 

150 
Publrshed by Elsevrer Suence Publrshers B. V. (Biomedical Divrsron) 

00145793/87/$3.50 @ 1987 Federation of European Biochemical Societies 



Volume 221. number 1 FEBS LETTERS August 1987 

pronase digest of P. interruptus hemocyanin have 
been described in [5]. 

Methyl a-D-mannopyranoside 6-U-sulfate was 
synthesized according to [6]. Briefly, methyl cu-D- 
mannopyranoside (194 mg, 1 mmol) was dissolved 
in 5 ml dry pyridine. After cooling to 5”C, 73 ~1 
chlorosulfonic acid (1.1 mmol) in 300 ~1 dry chlo- 
roform was added. The mixture was stirred for 
30 min at 5”C, and then for 2 h at 25°C. After the 
addition of 2 ml water, the solvent was evaporated 
to dryness. The crude material was purified on a 
silica column (2 x 7 cm), using a mixture of di- 
chloromethane: methanol (5 : 3, v/v) as eluting 
system. The final product was converted into the 
corresponding sodium salt by neutralization with 
NaOH. 

For ‘H-NMR analysis, samples were repeatedly 
exchanged in ‘H20 (99.96 atom% ‘H, Aldrich) 
with intermediate lyophilization. ‘H-NMR spectra 
were recorded on a Bruker AM-500 spectrometer 
(SON hf-NMR facility, Department of Biophysical 
Chemistry, University of Nijmegen, The Nether- 
lands) operating at 500 MHz in the Fourier- 
transform mode at a probe temperature of 27°C. 
One-dimensional spin lock difference spectroscopy 
was performed according to [7], in combination 
with the MLEV-17 composite pulse decoupling cy- 
cle [8], using a spin lock time of 160 ms. Resolu- 
tion enhancement of the spectra was achieved by 
Lorentzian-to-Gaussian transformation 191. 
Chemical shifts (6) are given relative to sodium 
4,4-dimethyl-4-silapentane- 1 -sulfonate, but were 
actually measured indirectly to acetone in ‘Hz0 (S 
2.225) [lo]. 

3. RESULTS AND DISCUSSION 

Hydrazinolysis of a pronase digest of hemo- 
cyanin from the spiny lobster P. interruptus 
resulted in complete liberation of the N-linked car- 
bohydrate chains [5]. After re-I%acetylation and 
reduction, the mixture of oligosaccharide-alditols 
was fractionated by high-voltage paper electro- 
phoresis, yielding 10% acidic material, which 
chromatographed as one peak, denoted A. In view 
of the sugar analysis of the native glycoprotein, 
showing only Man and GlcNAc as monosac- 
charides, no sugar constituent can be held respon- 
sible for the acidic nature of fraction A. 

To elucidate the primary structure of the oligo- 

saccharide-alditol present in fraction A, a 
500-MHz ‘H-NMR spectrum was recorded 
(fig.lA). Relevant ‘H-NMR data of A, together 
with those of Mana( 1-6)[GlcNA@( I-2)Mancu( l- 
3)] Man& 1-4)GlcNA$( 1-4)GlcNAc-01, being the 
previously reported structure in the neutral frac- 
tion c [5], are presented in table 1. The equal inten- 
sity of the anomeric proton signals in the ‘H-NMR 
spectrum of A points to the presence of a single 
compound. When comparing the ‘H-NMR data of 
A and c (table l), it is evident that all structural- 
reporter groups which are present in the spectrum 
of c also occur in that of A, having essentially the 
same chemical shifts. This means that the com- 
pound in fraction A and c must have the structural 
element GlcNAc@(l-2)Mana( 1-3)[Man@( I-6)]Ma- 
n,&( I-4)GlcNAc@( I-4)GlcNAc-01 in common. 
However, the spectrum of A shows two additional 
downfield signals, resonating at 6 4.354 and 6 4.2. 
The doublet of doublets at 6 4.354 has a large 
coupling constant of 11.6 Hz, which can only cor- 
respond to a geminal coupling of H-6 and H-6’ of 
Man, or GlcNAc. To identify this monosaccharide 
residue, one-dimensional spin lock difference spec- 
troscopy was performed. For this purpose a selec- 
tive 180” pulse was given to the signal at 6 4.354 
and the difference spectrum revealed the complete 
set of proton signals from one sugar unit (fig.lB). 
This residue could be identified as Man-4’ from 
the H-2 signal at S 3.979, and from the (less 
distinct) H-l signal at 6 4.911. The unknown signal 
at 6 4.2 belongs to H-6’ of Man-4’. The ap- 
pearance of the Man-4’ H-6 and H-6’ at downfield 
positions as found for A, in comparison to c, must 
be attributed to the presence of an acidic sub- 
stituent at C-6. In view of the literature data on 
acidic carbohydrate chains, it is reasonable to pro- 
pose that either a phosphate or a sulfate group is 
involved. It has been demonstrated that 6-0- 
phosphorylation of a terminal a-D-Man residue 
causes a downfield shift of H-6 and H-6’ to S 4.061 
in Ma@ I-6)Man-R [ 111 and a downfield shift of 
H-6 to 6 4.096 in Mar&l-2)Man, whereby a 
‘H-3’P coupling (6.5 Hz) is evident [12]. However, 
in the ‘H-NMR spectrum of A, the H-6 (and H-6’) 
are shifted to even more downfield positions than 
observed for H-6 (and H-6’) in terminal 6-0- 
phosphorylated a-D-mannose residues [I 1,121. 
Furthermore, no 1H-31P coupling is present on the 
Man-4’ H-6 and H-6’ signals. Therefore, a sulfate 
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Fig. 1. (A) Structural-reporter group regions of the resolution-enhanced 500-MHz ‘H-NMR spectrum (‘Hz0 at 27*C) 
of oligosaccharide-[1-*H]alditol fraction A from P. interruptus hemocyanin. The numbers in the spectrum refer to the 
corresponding residues in the structure. The relative intensity scale of the N-acetyl region differs from that of the other 
part of the spectrum as indicated. q5 denotes impurity. (B) Spin lock difference spectrum, with a selective 180” pulse 

(indicated by the arrow) on the H-6 signal of Man-4’. 

group should be present. To confirm this sugges- as those observed for Man-4’ H-6 (S 4.354) and 
tion, the ‘I-I-NMR spectra of the methyl a-D- H-6’ (S 4.218) in A. It should be noted that the H-6 
mannopyranoside and methyl a-D-mannopyrano- and H-6’ signals of Man-4’ are essentially the same 
side &O-sulfate were recorded. As is evident from as those described for terminal GlcNAc, O- 
table 2, sulfation at C-6 causes a downfield shift of sulfated at C-6 (H-6, 6 4.337; H-6’, S 4.219) in 
H-6 and H-6’ to 6 4.344 and 4.229, respectively. GlcNAc@( 1-3)Gal& ]I3]. Summarizing the various 
These chemical shift values are of the same order data, the structure of A is proposed to be: 
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Table 1 

‘H chemical shifts of structural-reporter groups of the 
constituent monosaccharides for the acidic high-voltage 
paper electrophoresis fraction A, together with the 
neutral HPLC fraction c, derived from Panulirus inter- 

ruptus hemocyanin 

Reporter Residue” Chemical shift b,c (ppm) 

group 

4’ s-4 ’ 

3-2-l-01 3-2-l-01 

5-4 5-4 

Fraction c Fraction A 

NAc GlcNAc-l-01 2.055 2.055 
GlcNAc-2 2.077 2.077 

GlcNAc-5 2.055 2.055 

H-l GlcNAc-2 4.636 4.636 
Man-3 4.789 4.817 

Man-4 5.118 5.129 
Man-4’ 4.918 4.911 

GlcNAc-5 4.551 4.551 
H-2 GlcNAc-l-01 4.239 4.221 

Man-3 4.255 4.235 
Man-4 4.186 4.187 
Man-4’ 3.975 3.979 

H-3 Man-4’ n.d.d 3.89 

H-4 Man-4’ n.d. 3.698 
H-5 Man-4’ n.d. 3.89 

H-6 Man-4’ n.d. 4.354 
H-6’ Man-4’ n.d. 4.218 

a For numbering of monosaccharide residues and com- 
plete structures, see fig.lA 

b Chemical shifts are given for neutral solutions at 27”C, 
in ppm downfield from sodium 4,4-dimethyl-4-silapen- 
tane-1-sulfonate in ‘Hz0 acquired at 500 MHz (but 
were actually measured relative to internal acetone: 6 
2.225) 

’ S, sulfate 
d n.d.. not determined 

4’ 

SO,-6)Mancu( 1-6) 3 2 I 
\ 

5 4 MarQ( I -4)GlcNAc& I -4)GlcNAc-01. 

/ 
GlcNAc@( 1-2)Mana( l-3) 

Primary structural studies on sulfated N-linked 
carbohydrate chains have thus far been very 

Table 2 

‘H-NMR chemical shifts for the methyl a-D-glycopy- 
ranosides of mannose and mannose 6-O-sulfate 

Protons Chemical shift” (ppm) 

Man Man-6-S 

H-l 4.761 4.763 
H-2 3.929 3.938 
H-3 3.751 3.626 
H-4 3.640 3.700 
H-5 3.604 3.824 
H-6 3.898 4.344 
H-6 ’ 3.755 4.229 
OCH, 3.407 3.418 

a Chemical shifts are given for neutral solutions at 27”C, 
in ppm downfield from sodium 4,4-dimethyl-4-silapen- 
tane-1-sulfonate in ‘Hz0 acquired at 500 MHz (but 
were actually measured relative to internal acetone: 6 
2.225) 

limited. Some details have been reported for 4-0- 

sulfated Man in the carbohydrate chains of hen egg 
albumin [14] and 3/4-O-sulfated GalNAc in the 
carbohydrate chains of lutropin [ 151. Man-6-sul- 
fate has been discovered recently as a constituent 
of the N-linked carbohydrate chains 
somal enzymes from Dictyostelium 

1161. 
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