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Kinetic refolding reactions of ferricytochrome ¢ and p-lactoglobulin have been studied by stopped-flow cir-

cular dichroism by monitoring rapid ellipticity changes of peptide backbone and side-chain chromophores.

In both proteins, a transient intermediate accumulates within the dead time of stopped-flow mixing (18 ms),

and the intermediate has an appreciable amount of secondary structure but possesses an unfolded tertiary

structure. It is suggested that the rapid formation of a secondary structure framework in protein folding
is a common property observed in a variety of globular proteins.
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1. INTRODUCTION

Recent studies of folding reactions of a-
lactalbumin, lysozyme and carbonic anhydrase B
have revealed the transient accumulation of a com-
pact intermediate that has a native-like backbone
structure [1,2]. Because these proteins show
relatively slow folding reactions over a time longer
than 10 s under the conditions used in those
studies, the detection and characterization of the
transient intermediate could be made by conven-
tional CD measurements. Folding of other pro-
teins, however, often occurs much faster in time
ranges down to milliseconds, thus requiring a rapid
reaction technique such as stopped-flow CD for
dealing with the problem of protein folding [3].
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In the previous report [4], one of the present
authors has described the construction of a slit-
type mixer specially designed for stopped-flow X-
ray scattering. Here, a similar but modified slit-
type mixer has been employed for studying rapid
CD changes associated with the refolding reactions
of Cyt ¢ and FLG. The structural patterns of Cyt
¢ (all ) and FLG (anti-parallel #-sheets) are dif-
ferent from each other and from those of the three
proteins mentioned above [5,6] and hence are
suitable for investigating whether the existence of
a structural intermediate during folding is a
general rule in globular proteins.

2. MATERIALS AND METHODS

Ferricytochrome ¢ (type VI from horse heart,
purchased from Sigma) was further purified as
described in {7]. Separation and purification of the
variants A and B of FL.G were performed as in [8].
Protein concentrations were determined spectro-
photometrically using the extinction coefficients,
€209 om = 1.06 X 10° M~'-cm™ for Cyt ¢ and
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Fig.1. Diagrammatic representation of the modified slit-

type mixer. Two solutions from inlets A and B are mixed

in a double two-jet mixing part, divided into 8 flow lines

at C and then expelled through a slit D (1 x 8 mm) to

enter a flat observation cell E with laminar flow (see
fig.2 of {4] for comparison).

€278 om = 1.77x 10* M~'.cm™  for GLG. CD
values in the peptide and aromatic regions are ex-
pressed as mean residue molar ellipticities, and
those in the Soret region as molar ellipticities of the
heme group.

Equilibrium and kinetic CD measurements were
carried out in a Jasco J-500A spectropolarimeter.
The stopped-flow apparatus attached to the spec-
tropolarimeter is largely similar to that presented
previously [4] except for a modification made in
the mixer to ensure more efficient mixing. Fig.1
shows a diagrammatic representation of the mixer
used here. In refolding experiments, protein solu-
tion in the U state in concentrated GdnHCI was
rapidly diluted with buffer solution with a volume
ratio of 1:9-1:10. The optical path length of the
observation cell was 1.0 mm for measurements in
the Soret region of Cyt ¢ and in the peptide region
for the two proteins and 4.0 mm for aromatic CD
of SLG. The dead time of stopped-flow mixing
was 18 ms (1 mm cell) or 32 ms (4 mm cell) at a
driving pressure of 4 atm.
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3. RESULTS

3.1. Equilibrium unfolding

The equilibrium unfolding transitions of the two
proteins were found to be reversible under our
present conditions. The unfolding of Cyt cis essen-
tially complete above 3.5 M GdnHCI and the pro-
tein is in the N state below 1.5 M GdnHCI, at both
4.5 and 25°C. FLG is in the U state above 4 M
GdnHCI and in the N state below 1.5 M GdnHCI
at 4.5°C; there was no difference detected between
the two components of SL.G. Fig.2 shows equilibri-
um CD spectra of Cyt ¢ and LG in the N and U
states.

3.2. Kinetics of folding and unfolding

The refolding kinetics of Cyt ¢ induced by a con-
centration jump of GdnHCIl from 4 to 0.4 M were
monitored by stopped-flow CD at 420 and 222.5
nm. The results at 25°C are shown in fig.3a,b, and
similar results were also obtained at 4.5°C except
that the apparent refolding rates observed were
10-20-fold lower at 4.5°C. The curve at 420 nm
could be decomposed into three kinetic phases.
The multiphasic kinetics of Cyt ¢ refolding may be
due, at least in part, to the presence of multiple un-
folded species [9], and this itself is not necessarily
a condition that satisfies the presence of a folding
intermediate. The kinetically observed CD change,
Afkinetic, during the time interval shown in fig.3a is
—6.7 x 10* degree - cm?- dmol ™!, which is close to
the value expected from the difference in elliptici-
ty, Afequit. (= In — Bu), between the N and U states
(fig.2). However, at 222.5 nm (fig.3b), Afxinetic
(—2x 10* degree-cm?-dmol™') is less than 20%
of Afcquit., and most of the CD change associated
with refolding occurs within the dead time of
stopped-flow mixing at both 25 and 4.5°C. Such
noncoincidence of the refolding curves measured
at the different wavelengths demonstrates the ex-
istence of an early intermediate that is still unfold-
ed when measured at 420 nm but has folded
secondary structure as measured by CD at
222.5 nm [2].

Instantaneous formation of the secondary struc-
ture within the dead time was also observed in SLG
folding. The kinetic refolding curves of SLG A
measured at 293 and 219 nm are shown in fig.3c,d,
the same results being obtained for /LG B. Also in
this case, the theoretical fitting of the refolding
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Fig.2. Equilibrium CD spectra. (a) Cyt ¢ at pH 6.8-7.0 and 25°C (0.2 M NaCl-50 mM phosphate); and (b) SLG A at
pH 3.2 and 4.5°C (0.1 M NaCl). (——) Spectra in the N state and (---) spectra in the U state in 4 M GdnHCI.

curve at 293 nm shows multiphasic kinetics
(fig.3¢). The CD value decreases with time as ex-
pected from the equilibrium CD spectra, and
Abkineric observed in the first 505 s (—81.6
degree-cm?-dmol™') is close to Afequu.. At
219 nm, however, the CD value increases with time
(Abuinenc = 3.2 X 10° degree-cm?- dmol ™) in spite
of a negative value of Afequn. (—4.0x 10°
degree - cm? - dmol™"). Therefore, at the beginning
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of the reaction, the intensity of the negative ellip-
ticity is higher than that in the N state.
Unfolding kinetics induced by concentration
jumps of GdnHCl from 0 to 3.6 M for Cyt ¢ and
from 0 to 4.0 M for LG were investigated at
4.5°C at the wavelengths used in refolding ex-
periments. In all cases, single-phase kinetics were
observed, and the values of Afkneuc wWere found to
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Fig.3. Kinetic refolding curves of Cyt ¢ (pH 6.8-7.0, 25°C) and GLG (pH 3.2, 4.5°C) at 0.4 M GdnHCl. (a) 420 nm

and (b) 222.5 nm for Cyt ¢, and (¢) 293 nm and (d) 219 nm for FLG. Ox and &y denote equilibrium CD values in the

N and U states. The time axis in each figure is divided into three time domains. In (a,c), theoretical curves fitted with

three exponential terms are also shown; the rate constants used in calculations were: (a) &, =3.75 x 1072,
k2 =8.65x107", k3=8.365""; (b) k1 =2.33x 1073, k2 =3.46 x 1072, k3 =1.25s7".
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be very close to those of Afequii., indicating that
there is no kinetic intermediate in the unfolding
reactions.

4. DISCUSSION

The present results demonstrate that the frame-
work formation of a backbone structure during an
early stage of folding is found in a variety of
globular proteins with different structural pat-
terns. Fine adjustment of the already folded struc-
tural segments may be the most difficult step in the
folding reactions.

It is well known that the coil-helix transition of
polypeptides is a very rapid process that can take
place well within 107° s [10]. The analogy between
instantaneous formation of a secondary structure
in protein folding and the rapidity of the coil-helix
transition of polypeptides has been discussed
earlier [2]. However, the Kkinetics of Z-structure
formation are not well understood. Early work
focused on poly(L-Lys) reported a slow process of
B-structure formation [11], while a recent report
on poly(L-Tyr) has demonstrated rapid formation
of the g-structure with a lifetime of ~ 1072 s [12].
The present results indicate that the &-structure
formation of LG during folding is very rapid and
complete within the stopped-flow dead time. It has
been suggested theoretically that the rate of &-
structure formation is sharply accelerated with an
increase in B-structure stability [13].
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