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Cyclic AMP raises cytosolic Ca2+ and promotes Ca2+ 
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The effect on cytosolic Ca*+ concentration ([Ca’+]J of CAMP analogues and the adenylate cyclase-stimulat- 
ing agents forskolin, isoproterenol and glucagon has been examined in an insulin-secreting p-cell line (HIT 
T- 15) using fura 2. All these manipulations of the CAMP messenger system promoted a rise in [CaZ+], which 
was blocked by the Ca2+ channel antagonists verapamil and nifedipine or by removal of extracellular Ca2+. 
The action of the adenylate cyclase activator forskolin was glucose-dependent. The results suggest that 
CAMP elevates [Ca’+]i in HIT cells by promoting Ca2+ entry through voltage-sensitive Ca2+ channels, not 
through mobilization of stored Ca 2+ Activation of Ca2+ influx may be an important component of the . 

mechanisms by which CAMP potentiates fuel-induced insulin release. 
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1. INTRODUCTION 

CAMP is an important modulator of insulin 
secretion as demonstrated by the ability of agents 
that elevate CAMP to potentiate fuel-induced in- 
sulin release [l-3]. Studies with pure p-cells [4,5] 
and dealing with the interaction of the nucleotide 
with the Ca’+-messenger system [6-91 indicate that 
CAMP may modulate the effectiveness of the Ca2+ 
system and determine the ,B-cell sensitivity and 
responsiveness to fuel secretagogues [3]. It also ap- 
pears that normal &cell stimulation by fuels re- 
quires the presence of A-cells that release some 
glucagon to maintain &cell CAMP content at a 
level necessary for fuels to be effective [4,5]. Thus, 
CAMP may not only be a potentiator of the 
secretory process but in addition may play a per- 
missive role in nutrient-induced insulin release [3]. 

The precise mechanisms by which CAMP exerts 
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its effects on the P-cell remain largely unsettled. A 
number of reports using indirect methods sug- 
gested that the action of CAMP might be exerted 
through elevations in cytosolic Ca2+ concentration 

([Ca2+li). 45Ca flux measurements in pancreatic 
islets have led to the proposal that a rise in &cell 
CAMP may result in the mobilization of stored 
Ca2+ [lO,ll], or acceleration of Ca2+ influx [12]. 
Electrical activity recordings of &cells have shown 
that the adenylate cyclase activator forskolin 
potentiates Ca 2+-dependent electrical activity in- 
duced by glucose, suggesting indirectly that CAMP 
enhances Ca2+ influx [12,13]. In other studies 
however, CAMP-raising agents failed to affect net 
45Ca uptake by pancreatic islets [ 11,141. The action 
of CAMP on cytosolic Ca2+ has been tested with 
the fluorescent indicator quin 2. Using this 
method, stimulation of adenylate cyclase by for- 
skolin and inhibition of CAMP phosphodiesterase 
by methylxanthines were not ‘associated with 
detectable elevations in [Ca2+]i in islets of ob/ob 
mice [15], in RINmSF insulinoma cells [7] or in an 
HIT ,&cell line [16]. 

Here, using the more sensitive dye fura 2, we 
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show that a variety of agents which are known to 
enhance CAMP production promote rapid eleva- 
tions in [Ca2+]i by accelerating Ca2+ influx in a 
fuel-sensitive [ 17-201 hamster P-cell line (HIT 
T- 15). Enhanced Ca2+ influx is likely to be a 
significant process involved in the modulation of 
nutrient-induced insulin secretion by CAMP. 

2. MATERIALS AND METHODS 

HIT cells (subclone T-15) [17] were a gift from 
Dr A.E. Boyd, iii (Houston, TX). Cells were 
grown in monolayer cultures as described [19]. 
Cells were detached from culture flasks by incuba- 
tion in the presence of EDTA without trypsin [21] 
for 5 min at 37°C. They were subsequently washed 
twice in modified L-l 5 medium (Gibco) containing 
15 mM Hepes and 0.5% bovine serum albumin 
(BSA fraction V, Sigma). HIT cells harvested from 
two confluent T-75 flasks were then resuspended in 
5 ml L-15 medium and incubated in the presence 
of 1 PM fura 2/AM at 37°C. After one wash, cells 
were incubated for an additional 10 min in the 
absence of fura 2/AM to allow completion of 
fura 2/AM hydrolysis by nonspecific esterases. 
Fura 2-loaded cells were further washed in L-15 
medium and resuspended in 0.5 ml modified 
Krebs-Ringer bicarbonate (KRB) buffer (pH 7.4) 
containing 5 mM NaHCOj, 2 mM CaCl2, 10 mM 
Hepes and 0.5% BSA, and kept on ice until use. 
The fluorescence of fura 2-loaded cells was 
measured in acrylic cuvettes using an MB-2 four 
filter air turbine fluorescence spectrophotometer 
(Johnson Foundation, University of Pennsylvania) 
at the excitation wavelengths of 340 nm 

(Ca’+-fura 2 complex) and 380 nm (free fura 2), 
and at an emission wavelength of 510 nm. Cell 
suspensions (approx. 0.5 mg protein) were in- 
cubated at 26°C in 2 ml KRB supplemented with 
10 mM glucose. Leakage of fura 2 from the cells at 
37°C was considerable since it was about 3-times 
the leakage at 26°C that is shown in fig.ld. We 
therefore routinely measured fura 2 fluorescence 
at 26°C and have verified that all findings reported 
here were also observed at 37°C. None of the 
agents tested induced autofluorescence in HIT cells 
that had not been loaded with fura 2. [Ca’+]i was 
calibrated from data obtained at an excitation 
wavelength of 340 nm using a Kd for Ca2+ of 
224 nM [22]. Cells were lysed with 0.04% Triton 
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X-100 to obtain the maximal fluorescence. This 
was followed by addition of Tris base to bring the 
medium pH to 7.9 and 5 mM EGTA to determine 
minimal fluorescence. Corrections for extra- 
cellular fura 2 were made from measurements of 
the immediate decrease in fluorescence after addi- 
tion of 50 yM MnCl2 to quench external fura 2 
[22]. The traces shown in the figures are represen- 
tative experiments that have been repeated at least 
three times. All reagents were of analytical grade. 
Forskolin and fura 2/AM were obtained from 
Calbiochem-Behring. Glucagon was purchased 
from Lilly (Indianapolis, IN) and 8-(4-chloro- 
phenylthio)-CAMP from Boehringer Mannheim 
(FRG). 

3. RESULTS 

To examine the action of CAMP on [Ca’+]i in 
HIT cells, we tested the effect of a CAMP analogue 
and several agents that promote rises in CAMP by 
different mechanisms. Fig.1 illustrates a series of 
experiments in which we used the CAMP analogue 
8-(4-chlorophenylthio)-CAMP (cpt-CAMP) which 
has been shown to be a very potent activator (near- 
ly loo-times more effective than CAMP) of rat liver 
CAMP-dependent protein kinase [23]. The 
analogue cpt-CAMP rapidly increased [Ca’+]i. A 
peak elevation in Ca2+ was reached in about 2 min, 
and [Ca2+]i remained elevated for more than 10 
min (fig. la). Dibutyryl-CAMP caused similar 
changes in [Ca’+]i, but was approx. lo-times less 
effective at the same concentration. Prior addition 
of the voltage-sensitive Ca2+ channel blocker 
verapamil or chelation of medium Ca2+ with 
EGTA suppressed the Ca2+ transient induced by 
cpt-CAMP or by a depolarizing concentration of 
KC1 (fig.lb,c). In contrast, the action of the 
muscarinic agonist carbamylcholine was unaf- 
fected by verapamil or EGTA. The data 
demonstrate that cpt-CAMP promoted a net Ca2+ 
influx in HIT cells and did not mobilize stored 
Ca2+. Increases in cytosolic Ca*+ elicited by cpt- 
CAMP appear to occur as a result of accelerated 
Ca2+ influx through voltage-sensitive Ca2+ chan- 
nels and not by inhibition of Ca2+ extruding trans- 
port systems that are present in the cell membrane. 
Thus, the action of cpt-CAMP was blocked by 
verapamil (fig. 1 b) and cpt-CAMP did not modify 
[Ca’+]i when it was added after a Ca2+ transient 
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Fig. 1. Effect of verapamil and EGTA on cytosolic Ca2+ 
transients induced by a CAMP analogue, high K+ and 
carbamylcholine. The traces show fura 2 measurements 
(expressed in arbitrary units) made at an excitation 
wavelength of 340 nm and at an emission wavelength of 
510 nm. An increase in fluorescence indicates an eleva- 
tion in cytosolic Ca’+. Arrows denote the times of addi- 
tion of 200 FM 8-(chIorophenylthio)-CAMP (cpt- 
CAMP), 35 mM KC1 (K+), 200pM carbamylcholine 
(Carb), 25 ,xM verapamil, and 5 mM EGTA. Isolated 
HIT cells in suspension were incubated in the presence of 

10 mM glucose as described in section 2. 

induced by a depolarizing concentration of KC1 
(fig.2). These observations suggest that cpt-CAMP 
and high KC1 promoted activation of similar 
type(s) of voltage-dependent Ca*+ channels. There 
was some leakage of fura 2 from HIT cells, since 
the progressive increase in fluorescence shown in 
fig. Id was immediately suppressed upon addition 
of Mn*+ to quench extracellular fura 2 (see also 
fig.3). 

Additional evidence demonstrates that rises in 
cellular CAMP activated Ca*+ influx. Consistent 
with observations using cpt-CAMP, the adenylate 
cyclase activator forskolin also induced rises in 
[Ca*+]i (fig.3). The half-maximally effective con- 
centration of forskolin was 5 PM. The divalent ca- 
tion Mn*+ is known to permeate Ca*+ channels 
[24]. In contrast to Ca*+, Mn*+ binding to fura 2 
causes quenching of the fura 2 signal [22]. Fig.3 
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Fig.2. A CAMP analogue does not cause an elevation in 
cytosolic CaZf after a Ca2+ transient induced by a 
depolarizing concentration of KCl. Arrows denote the 
additions of 35 mM KC1 (K+), 200 PM S-(chlorophenyl- 
thio)-CAMP (cpt-CAMP), and 200 PM carbamylchohne 

(Carb). 
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Fig.3. Forskolin-treated cells display an accelerated 
quenching of intracellular fura 2 fluorescence upon ad- 
dition of MnC12. Arrows denote the additions of 25 pM 
forskolin (FORSK) dissolved in ethanol (EtOH), 100 ,uM 
MnC12 (Mn”) and 200 PM diethylenetriaminepenta- 

acetic acid (DTPA). 

shows that Mn*+ elicited an immediate decrease in 
fluorescence due to quenching of contaminating 
extracellular fura 2. This was followed by a slower 
progressive decrease in fluorescence that was ac- 
celerated in cells which had been treated with for- 
skolin (fig.3). Subsequent addition of DTPA, a 
high-affinity non-permeant heavy metal chelator 
[25], reversed the action of Mn2+ on the Ca*+ 
signal. Thus, an immediate increase in fluores- 
cence occurred due to chelation of extracellular 
Mn2+ and therefore restoration of the signal due to 
contaminating extracellular fura 2 signal. This was 
followed by a progressive increase in fluorescence 
that is presumably a consequence of slow extrusion 
of cellular Mn*+. The rate of intracellular fura 2 
quenching by Mn*+ (calculated from the slope of 
the decrease in fluorescence following immediate 
quenching of extracellular fura 2) was measured in 
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the absence and presence of forskolin and high 
KCl. This slope may reflect the influx of Ca2+ 
through voltage-dependent Ca’+ channels since 
Mn2+ has been shown to permeate voltage- 
sensitive Ca2+ channels. Compared to basal condi- 
tions, forskolin (25 PM) increased the initial rate 
of intracellular fura 2 quenching by 54 f 2% and 
KC1 (35 mM) by 240 -t 47% (mean f SE of 3 ex- 
periments). 

Table 1 summarizes the effects of different 
agonists which were tested at a maximally effective 
concentration. The adenylate cyclase activator for- 
skolin, the ,8-adrenergic agonist isoproterenol and 
the peptide hormone glucagon raised [Ca2+]i to ap- 
proximately the same level. The pattern and 
magnitude of [Ca2+]i changes caused by these 
agents were similar to the effect of cpt-CAMP. All 
induced peak elevations in [Ca”]i that were about 
50% above basal levels. The action of these 
adenylate cyclase activators was abolished by the 
Ca2+ channel blockers verapamil (25 FM) and 
nifedipine (3 PM) or chelation of medium Ca2+ 
with EGTA (not shown). 

CAMP potentiates fuel-induced insulin secretion 
(l-31. We therefore investigated whether the action 
of forskolin was dependent on the presence of 
glucose. As observed previously using quin 2 [ 181, 
glucose (10 mM) by itself did not cause detectable 
changes in [Ca’+]i in HIT cells when added to 
glucose-deprived cells. The action of forskolin on 
[Ca’+]i was, however, dependent on glucose since 

Table 1 

[Ca*‘]i in -HIT cells under various experimental 
conditions 

Condition [Ca’+]i (nM) 

Basal 61i 4(24) 
cpt-CAMP (200 /tM) 95 + 12 (8) 
Forskolin (25 PM) 92 ? 13 (10) 
Isoproterenol (1 ,uM) 86 -t 22 (4) 
Glucagon (0.1 ,uM) 97 (2) 
Carbamylcholine (200 FM) 147 * 15 (9) 
KCI (35 mM) 251*29 (8) 

HIT cells were incubated with 10 mM glucose. The 
results of basal and peak ]Ca*‘]j measurements made in 
the presence of a variety of agents are summarized. 
Cytosolic [Ca*‘] was calibrated as described in section 2. 
Means -+ SE of [Ca*‘]i are given for the indicated 

number (n) of separate experiments 
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in the absence of glucose forskolin increased 
[Ca’+]i by only 43 f 4% (mean f SE of 3 ex- 
periments) of the effect observed at 10 mM 
glucose. 

4. DISCUSSION 

Agents that elevate cellular CAMP such as for- 
skolin or the CAMP-phosphodiesterase inhibitor 
3-isobutyl- 1 -methylxanthine (IBMX) markedly 
potentiate fuel-induced insulin secretion in insulin- 
secreting cells [l-5], including HIT cells 
[16,18,20]. Recent studies using quin 2 suggested 
that CAMP modulates secretion at a site distal to 
Ca2+ since several agents that promote an eleva- 
tion in CAMP did not cause detectable changes in 
[Ca’+]i [7,15,16]. Using the more sensitive dye 
fura 2, the present study shows unambiguously 
that cytosolic Ca2+ rises when HIT cells are 
stimulated with CAMP agonists. Several lines of 
evidence indicate that CAMP promotes Ca2+ entry 
through voltage-sensitive Ca2+ channels in HIT 
cells and that it does not mobilize stored Ca2+. 
First, the effect was suppressed by the voltage- 
sensitive Ca2+ channel blockers verapamil and 
nifedipine or by removal of external Ca*+ with 
EGTA. Second, cpt-CAMP did not elevate Ca2+ 
when cells were depolarized with high KCl. Third, 
net Ca’+ entry appear to be accelerated in 
forskolin-treated cells as shown in studies (fig.3) in 
which the rate of intracellular fura 2 quenching by 
Mn2+ was measured. It appears therefore that ac- 
celerated CaZC entry through voltage-sensitive 
Ca2+ channels might be an important mechanism 
by which CAMP potentiates the insulin secretory 
process. Additional mechanism(s) could also be of 
importance. Studies with permeabilized islets [8,9] 
or RINmSF insulinoma cells [26] have shown that 
CAMP stimulates insulin secretion under condi- 
tions where medium Ca2+ is fixed with 
Ca2+/EGTA buffers. In addition, it has been 
shown that forskolin slightly stimulates insulin 
release from islets incubated in the absence of Ca2+ 
with EGTA present [14,27]. Therefore, CAMP 
may facilitate secretion both by promoting Ca’+ 
entry and by sensitizing the releasing machinery to 
the action of Ca2+ or other messengers. 

The observation that the action of forskolin on 
[Ca”]i is glucose-dependent is of interest. It is 
noteworthy in this respect that several reports have 
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documented that insulin secretion cannot be 
elicited by CAMP-raising agents in the absence of 
fuel stimuli, in particular glucose [1,2,28]. The 
reason for this glucose dependency is not known. 
It is plausible that permissive non-stimulatory 
levels of nutrients are needed to maintain the 
energy status of p-cells or basal levels of various 
messengers. 

The exact mechanism by which CAMP promotes 
Ca2+ influx in insulin-secreting cells remains to be 
determined. By comparison with data obtained in 
other tissues, the most likely possibility is that 
CAMP alters Ca2+ or K’ channel activities. Using 
the patch-clamp technique it has been 
demonstrated that CAMP enhances transmem- 
brane Ca’+ influx in heart cells [29] and cortico- 
tropin-secreting cells [30] by increasing the number 
and opening probability of voltage-sensitive Ca’+ 
channels [29]. K+ channels have also been reported 
to be modulated by CAMP in lymphocytes [31]. 
Further studies using the patch-clamp technique 
should help to define the mechanism by which 
CAMP accelerates Ca2+ influx in insulin-secreting 

cells. 
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