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Neurohypophyseal peptide inhibition of adenylate cyclase 
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The effect of environmental salinity 
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Adenylate cyclase activity was measured in plasma membranes prepared from gill epithelium of the rainbow 
trout (Salmo gairdneri) adapted to a large range of salinity (deionized water to seawater). Fish neurohypo- 
physeal peptides (arginine-vasotocin and isotocin) elicited a dose-dependent inhibition (maximum for IO- 
‘2-1O-‘o M which corresponds to physiological blood concentrations) of both basal and low9 M glucagon- 
stimulated enzyme activity. While basal activity was inhibited by up to 40% only in high salt media, gluca- 
gon-stimulated activity was lowered by 6tX-10096 for the same concentrations, in both freshwater and sea- 

water. 

Adenylate cyclase; Neurohypophyseal peptide; Arginine-vasotocin; Isotocin; Salt adaptation; (Trout gill) 

1. INTRODUCTION 

In tetrapod vertebrates, neurohypophyseal hor- 
mones are very potent in the regulation of water 
and ion transport by epithelia (such as kidney 
tubules, amphibian skin or bladder) by stimulating 
adenylate cyclase via so-called VZ receptors [l-4]. 
Other effects of these peptides (vasoconstriction, 
glycogenolysis, platelet aggregation) appear to be 
mediated by stimulation of phosphoinositide 
breakdown and/or calcium mobilization, via 
Vi-type receptors [2,5-91. 

In teleost fishes, osmoregulation depends upon 
transport activity of several organs, the gills in par- 
ticular. Their neurohypophysis produces vasotocin 
(AVT) and isotocin (IT) but the physiological 
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functions of these hormones are still poorly de- 
fined and no studies have been carried out concer- 
ning relationships between them and adenylate 
cyclase activity. Recently, however, we have 
characterized this enzyme in gills by in vitro assay 
[lo] and shown the importance of high salt media 
in modulating this activity and the potency of hor- 
monal and pharmacological substances in 
stimulating the enzyme [ 11,121. 

This lack of information led us to analyze the ef- 
fect of arginine-vasotocin and of isotocin on 
adenylate cyclase in the gills of trout and to ex- 
amine the changes in this enzyme associated with 
fish adaptation to various salinities. 

Our data suggest that neurohypophyseal pep- 
tides in fishes do not behave in the same way as in 
tetrapods, since they inhibit adenylate cyclase in 
gills (rather than the stimulation seen in other ion 
transporting epithelia). Moreover, we showed in 
membrane fractions that these peptides are able to 
reduce basal adenylate cyclase activity, a fact rare- 
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ly reported in tetrapods. Finally, we found that the 
ability to inhibit this enzyme is sensitive to the en- 
vironmental salinity of the animals. 

2. MATERIALS AND METHODS 

2.1. Chemicals 
Cyclic 3’,5’-[2,8-3H]adenosine monophosphate 

(CAMP, 50 Ci/mmol) was obtained from the 
Commissariat a 1’Energie Atomique (Saclay, 
France) and [a-32P]ATP 50 Ci/mmol) was sup- 
plied in dry ice by New England Nuclear (via Du- 
pont de Nemours, Paris). Dowex AG-50W-X8 
cation-exchange resin (200-400 mesh, HC form) 
was obtained from Bio-Rad (Vitry/Seine, France). 
Arginine-vasotocin and isotocin were purchased 
from Bachem (Torrance, USA). Scintillation fluid 
(Aqualuma) was obtained from Kontron (Trappes, 
France). All other products were purchased from 
Sigma (USA). 

2.2. Animals 
Rainbow trout, Salmo gairdneri (average weight 

220 g), were purchased from a local fish farm and 
maintained at 12-15°C in the laboratory, with a 
constant photoperiod (12 h light per day). Mullet, 
Mugil sp. (average weight 70 g), were supplied by 
the Musee Oceanographique, Monaco. Salt adap- 
tation of these animals was carried out stepwise as 
described [12]. Controls corresponding to each 
condition of salinity were run in parallel. 

2.3. Preparation of gill plasma membranes 
Gill membranes were prepared as described in 

[ 10,121 and the pelleted membranes, obtained after 
centrifugation at 25000 x g for 10 min, were 
suspended in an appropriate volume of 0.3 M 
sucrose to obtain a concentration of approx. 6 mg 
protein per ml. Aliquots of 1 ml were immediately 
frozen and stored at - 30°C to be used as the 
source of adenylate cyclase. Protein content of the 
membranes was measured by the dye-binding pro- 
cedure of Bradford [13]. 

2.4. Assay of gill adenylate cyclase activity 
Typical assay medium contained: 4 mM MgCl2; 

1 mM EDTA; 75 mM Tris-HCl, pH 7.4; 8 mM 
theophylline; an ATP regenerating system (10 mM 
creatine phosphate; 0.5 mg/ml creatine phos- 
phokinase, 200 U/mg; 0.05 mg/ml myokinase, 

2000 U/mg); 0.5 mM CAMP and 50000 dpm 
t3H]cAMP; 0.75 mM [cy-32P]ATP (50-80 dpm/ 
pmol); 10e5 M GTP. Routinely, the final volume 
of assay mixture was 50~1, containing 10~1 of 
adenylate cyclase membrane preparation (average 
50-6Opg protein). The reaction was initiated by 
addition of labelled and non-labelled nucleotides, 
and after incubation for 10 min at 20°C under 
slow shaking, it was terminated by the addition of 
200 ~1 stopping solution (10 mM CaCl2; 10 mM 
Tris-HCl, pH 7.4) and heating for 3 min in boiling 
water. 

Adenylate cyclase activity was determined by 
measuring [cu-32P]cAMP formation from [cz-~~P] 
ATP as in [10,12]. When neurohypophyseal pep- 
tides were present, the activity was expressed by its 
absolute value (pmol CAMP produced/mg protein 
per 10 min) or as a stimulation ratio with respect 
to the corresponding basal value (test/basal ratio). 
For statistical purposes, each type of experiment 
was repeated 3 times and each determination was 
made in separate quadruplicates. Statistical 
analysis was made by desk computer (Sirius Vic- 
tor) using Student’s test for unpaired values. 

3. RESULTS 

In previous observations [ll, 121, we measured 
adenylate cyclase activity in trout adapted to a 
large range of salinities and in the mullet, a marine 
species. In trout, this activity declined by a factor 
of 2 between deionized water and full strength sea 
water (pmol cAMP/mg protein per 10 min): 530 in 
deionized water (DW), 440 in fresh water (FW), 
340 in 314 sea water (3/4 SW), 250 in sea water 
(SW). For mullet in sea water it was very low: 35. 
The effects of neurohypophyseal peptides have 
been considered at these various salinities in the 
present work. 

Fig. 1 represents the effects on basal (or control) 
activity of both AVT and IT. All the ratios 
(test/basal) were below 1, indicating an inhibition 
of the adenylate cyclase activity. In addition, the 
maximum inhibition was obtained for 10-10-10-‘2 
M concentrations of the hormones, while the ICSO 
was around lo-l3 M. Strikingly, however, the in- 
hibition was only evident in high salt media (40% 
for AVT, 30% for IT in trout; 50% with AVT or 
IT in mullet). 

This inhibitory effect was also studied when the 
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Fig. 1. Effect of (A) AVT and (B) IT concentrations on 
basal adenylate cyclase activity in trout adapted to (©) 
DW, (e) FW, (v )  3/4 SW, (u) SW and in (*) SW- 
adapted mullet. Results are expressed as a ratio 

(test/control). SE less than 5% of means. 

e n z y m e  activity was pre-st imulated by the addition 
o f  10 -9 M glucagon.  

Fig.2 illustrates the results in FW-adapted fish. 
The inhibit ion was now demonstrable  in this 
m e d i u m  since the s t imulatory effect  o f  g lucagon 
was comple te ly  abol ished by A V T  and was reduced 
by 60% by IT. 
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Fig.2. Effect of (A) AVT and (B) IT concentrations on 
10 9 M glucagon-pre-stimulated adenylate cyclase 
activity in FW-adapted trout. Results are expressed as 

means _+ SE (n = 3 separate experiments). 
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Fig.3. Effect of (A) AVT and (B) IT concentrations on 
10 -9 M glucagon-pre-stimulated adenylate cyclase 
activity in SW-adapted trout. Results are expressed as 

means _+ SE (n = 3 separate experiments). 

Fig.3 presents similar experiments  in SW- 
adapted animals .  Again,  the g lucagon-st imulated 
activity was complete ly  inhibited when A V T  or IT 
was present in the same concentrat ion range as 
above .  

The shape o f  the curves indicates that desen- 
sit ization occurred when higher hormona l  concen-  
trations were used. 

4. D I S C U S S I O N  

The present data show for the first t ime that 
A V T  and IT at low concentrat ions  (10 - ~ ° -  
I0 -~2 M) are capable o f  producing a large inhibi- 
t ion o f  adenylate  cyclase activity in fish gills. These  
results are biological ly  meaningful  s ince recent 
measurements  o f  circulating A V T  levels in trout by 
rad io immunoassay  indicate that these concentra-  
tions are within the physiological  range [14]. 

The inhibitory effect  is therefore oppos i te  to the 
well established s t imulatory action o f  vasopressin 
on ion and water transporting epithelia o f  
tetrapods,  in which there is an activation o f  the 
adenylate  cyclase-cycl ic  A M P  system linked to the 
V2 receptor type [1]. 

Reduct ion o f  cyclic A M P  accumulat ion  by 
vasopressin has been demonstrated in a number o f  
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cellular types in mammals, e.g. rat hepatocytes 
[ 151, rat brain [ 161, rat cultured aortic smooth 
muscle [ 171, and human platelets [9]. It has also 
been shown in our laboratory [18] to occur in fish 
hepatocytes. This effect was obtained, however, 
with much higher doses of hormone (up to 
10F6 M). It has been ascribed to Ca2+ mobilization 
and/or to phosphoinositide breakdown and has 
been associated with the Vi receptor type 
]9,15,19-241. However, circumstantial evidence 
suggests that the VI receptors may comprise 2 sub- 
types or more [25] and that a third class (V3) of 
receptor may exist [16,26,27]. In addition, Morgan 
[15] has demonstrated in rat hepatocytes that the 
inhibition of CAMP accumulation was not solely 
the consequence of cellular Ca2+ mobilization but 
may also involve direct inhibition of adenylate 
cyclase. 

Our experiments, performed on membrane frac- 
tions rather than intact cells, involved direct 
measurements of adenylate cyclase activity and 
Ca2+ intervention was ruled out in our assay 
system. Moreover, not only did neurohypophyseal 
peptides reduce or suppress the glucagon 
stimulatory effect, but the basal activity was also 
inhibited, a fact rarely shown previously to our 
knowledge (15-25% in platelets [9]). In other 
systems, vasopressin has been found only to pre- 
vent partially the cyclic AMP accumulation in- 
duced by glucagon (20% in hepatocytes [15] or by 
noradrenalin, dopamine and forskolin (SOOro, 45% 
and 40% in rat brain [16]). 

In other experiments, to be reported in detail 
elsewhere, we made use of additional tools (per- 
tussis toxin, guanine nucleotides) to investigate 
further the properties of the enzyme. Together 
with the present results, they strongly suggest that 
the neurohypophyseal receptors of fish gills are 
negatively coupled to the adenylate cyclase, 
presumably by way of Gi protein. Current in- 
vestigations using agonist and antagonist 
analogues of vasopressin should enable us to 
define the receptor subtypes present in this tissue. 

Another outcome of the present work is that the 
stability to which fish were acclimated had a large 
effect on the basal and hormone-sensitive enzyme 
activity. This confirms our previous observations 
concerning stimulation by isoproterenol, gluca- 
gon, VIP and NaF [11,12]. 

Since the gill epithelium is heterogeneous, it is 

essential to elucidate the cellular type(s) concerned 
in this regulation. In consideration of existing 
histological observations however, we have sug- 
gested that the variations affecting the gill 
adenylate cyclase activity and its responses reflect 
changes in the ‘chloride cell’ population [12]. This 
interpretation should apply to the present study of 
neurohypophyseal hormone action. 
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