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Noradrenaline (1-10 gM) inhibited Ca 2 +-induced insulin secretion from electrically permeabilised islets of 
Langerhans with an efficacy similar to that for inhibition of glucose-induced insulin secretion from intact 
islets. The inhibition of insulin secretion from permeabilised islets was blocked by the ~-adrenoreceptor 
antagonist, yohimbine. Adenosine Y,5'-cyclic monophosphate (cAMP) did not relieve the noradrenaline in- 
hibition of Ca 2 +-induced secretion from the permeabilised islets, although noradrenaline did not affect the 
secretory responses to cAMP at substimulatory (50 nM) concentrations of Ca 2 +. These results suggest that 
catecholamines do not inhibit insulin secretion solely by reducing B-cell adenylate cyclase activity, and imply 

that one site of action of noradrenaline is at a late stage in the secretory process. 

Insulin secretion; Electrical permeabilisation; Noradrenaline; cyclic AMP; (Islets of Langerhans) 

1. I N T R O D U C T I O N  

Catecholamines exert a profound inhibition of  
insulin secretion in vivo, f rom perfused pancreas in 
vitro and f rom isolated islets of  Langerhans, sug- 
gesting that circulating levels of  the hormone 
adrenaline or the release of  noradrenaline f rom 
sympathetic nerve terminals may play an impor-  
tant role in the physiological regulation of  insulin 
secretion (reviews [1,2]). 

A number  of  mechanisms by which 
catecholamines could inhibit insulin secretion have 
been proposed,  including effects on Ca 2+ handling 
[3,4], modulat ion of  prostaglandin synthesis [5], 
and regulation of  intracellular concentrations of  
cAMP [6,7]. The intracellular mechanisms of the 
inhibition are still unclear, but the ability of  
catecholamines to inhibit insulin release in 

response to a wide variety of  secretagogues sug- 
gests an action at an important  point in the 
secretory pathway. 

We have studied the involvement of  Ca z+ and 
cAMP in the catecholamine inhibition of  insulin 
secretion by comparing the effects of  
noradrenaline on insulin secretion from intact 
islets of  Langerhans and f rom islets in which the 
cells have been permeabilised by high-voltage 
discharge to allow the introduction of  ions and 
small molecules into the intracellular compart -  
ment.  Electrically permeabilised islets do not re- 
spond to glucose [8] but secrete insulin in response 
to Ca 2÷ [91 or cAMP [10], and thus offer  a useful 
model in which to study the involvement of  these 
intracellular mediators in the control of  insulin 
secretion. 
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2. MATERIALS AND M E T H O D S  

Islets of  Langerhans were isolated f rom rat pan- 
creas by collagenase digestion [11] and incubated 
for 60 min at 37°C in a bicarbonate-buffered (pH 
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7.4) physiological salt solution [12] containing 
2 mM glucose, 2 mM CaCI2 and 0.5 mg /ml  bovine 
serum albumin (BSA, fraction V). In experiments 
using intact islets, groups of  three islets were in- 
cubated for 60 min at 37°C in 0.6 ml of  the 
physiological salt solution containing the test 
substances of  interest. In other experiments, islets 
were permeabilised by exposure to a high-intensity 
electric field [9]. Briefly, the islets were thoroughly 
washed in a Ca2+/EGTA buffer (permeation buf- 
fer) containing 140 mM K-glutamate, 15 mM 
Hepes, 7 mM MgSO4, 5 mM adenosine 
5 ' - t r iphosphate  (ATP), 0.5 mg/ml  BSA, 1-5 mM 
EGTA,  pH 6.6, with CaCI2 added to produce a 
Ca 2÷ concentration of  50 nM, and permeabilised 
by 5 exposures to an electric field of  3.4 kV/cm.  
Groups of 10 permeabilised islets were incubated 
at 37°C for 30 min in 1.0 ml permeation buffer  of  
various Ca 2÷ concentrations containing the test 
substances of  interest. Insulin secretion f rom intact 
and permeabilised islets was measured by radioim- 
munoassay as described [13]. ATP,  BSA, 
noradrenaline, yohimbine, cAMP and 2 ' - 0 -  
dibutyryl adenosine 3 '  : 5 '-cyclic monophosphate  
(db-cAMP) were obtained f rom Sigma (Poole, 
England). Ascorbic acid (100/zM) was included in 
all incubations to inhibit the oxidation of  
noradrenaline. Differences between means were 
assessed by analysis of  variance or Student 's  un- 
paired t-test, as appropriate.  

3. RESULTS 

Noradrenaline caused a marked inhibition of  
glucose-stimulated insulin secretion f rom intact 
islets, and of Ca2+-induced insulin secretion f rom 
electrically permeabilised islets. Fig. 1 shows the ef- 
fects of  noradrenaline (10/~M) on insulin secretion 
f rom intact islets in response to glucose (upper 
panel) and f rom permeabilised islets in response to 
Ca 2÷ (lower panel). Noradrenaline had no signifi- 
cant effects on the basal rate of  insulin secretion by 
intact islets in 2 mM glucose, or on that of  
permeabilised islets in the presence of  50 nM Ca 2÷. 
However, the presence of  10/zM noradrenaline 
totally abolished the 10-fold increase in insulin 
secretion by intact islets in response to 20 mM 
glucose (fig.l ,  upper panel) and the secretory 
response of permeabilised islets to 10/~M Ca 2+ 
(fig.l ,  lower panel). 
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Fig.1. Noradrenaline inhibition of insulin secretion. 
Noradrenaline (10/zM, hatched bars) totally inhibited 
glucose-induced (20 mM) insulin secretion from intact 
islets (upper panel) and CaZ+-induced (10/zM) insulin 
secretion from electrically permeabilised islets (lower 

panel). Bars show mean _+ SE, n = 6-8. 

Inhibition of  insulin secretion by noradrenaline 
was dose-related, as shown in fig.2. In permeabil- 
ised islets, 50°70 inhibition of the maximum 
Ca2÷-induced response was observed at a 
noradrenaline concentration of  approx. 2.5/zM, 
while m a x i m u m  inhibition of  secretion was pro- 
duced by 10/~M noradrenaline (fig.2, upper 
panel). Inhibition of  glucose-induced insulin secre- 
tion f rom intact islets showed a similar dose- 
response relationship, with 50°7o inhibition of  
secretion at around 2/zM noradrenaline and total 
inhibition of  glucose-induced insulin secretion at 
noradrenaline concentrations of  5 -10 /zM (fig.2, 
lower panel). 

Noradrenaline inhibition of  insulin secretion 
was antagonised by the oe2-adrenoreceptor an- 
tagonist yohimbine. In intact islets, 10/zM yohim- 
bine completely blocked the inhibition of 
glucose-induced insulin secretion by noradrenaline 
(20 mM glucose, 4.3 + 0.3 ng/islet per h; + 10/zM 
noradrenaline, 0.5 + 0.1; + 10/zM noradrenaline 
+ 10/zM yohimbine, 3.8 + 0.4, mean + SE, n = 
5). Similarly, in experiments using permeabilised 
islets 10/zM Ca 2÷ stimulated insulin secretion by 
254 _+ 33% (n = 9, p < 0.01), noradrenaline 

140 



8 0 0  - 

FEBS LETTERS July 1987 

"G 4 0 0 -  

e, 

0 

10 

m 

i / - '  i i i 

0 2 . 5  10  

n o r a d r e n a l i n e  ( p M )  

¢1 

"~ 5 

e -  -e 

o r--c/ , , , , 
0 2 . 5  1 0  

n o r a d r e n a l i n e  (~M)  

Fig.2. Dose responsiveness of  noradrenaline inhibition 
of insulin secretion. (Upper panel) Increasing 
concentrations of noradrenaline caused a dose-related 
inhibition of insulin secretion from electrically 
permeabilised islets incubated in the presence of 10/LM 
Ca 2÷. The open point shows basal secretion in the 
presence of 50 nM Ca 2÷ (mean _+ SE, n = 7). (Lower 
panel) Noradrenaline inhibition of insulin secretion 
from intact islets incubated in the presence of 20 mM 
glucose showed a similar dose responsiveness (mean +_ 

SE, n = 6). 

(10/zM) to ta l ly  inh ib i ted  Ca2÷- induced secre t ion  
(71 +_ 8% basa l ,  n = 9, N.S . )  and  this inh ib i t ion  
was abo l i shed  by  the inc lus ion  o f  10/zM yoh im-  
b ine  in the incuba t ion  bu f f e r  (270 _+ 27% basa l ,  n 
= 9, p < 0.01). 

The  effects  o f  c A M P  on insulin secre t ion  f rom 
pe rmeab i l i sed  islets are  shown in fig.3 (upper  
panel) ,  c A M P  s t imula ted  insul in secre t ion  f rom 
electr ical ly  pe rmeab i l i sed  islets at  bo th  sub- 
s t imu la to ry  (50 nM)  and  s t imu la to ry  (10/zM) con-  
cen t ra t ions  o f  C a  2÷. N o r a d r e n a l i n e  (10/~M) in- 
h ib i ted  the  secre tory  response  to 10/~M C a  2÷ 
a lone ,  and  also reduced  the insul in release evoked  
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Fig.3. Effects of  cAMP on noradrenaline inhibition of 
insulin secretion. (Upper panel) Ca2+-induced insulin 
secretion from electrically permeabilised islets (o) was 
significantly 6O < 0.01) enhanced by .the presence of 
100/zM cAMP ( i ) .  Noradrenaline (10/zM) markedly 
inhibited insulin secretion in response to Ca z÷ alone 
(©). In the presence of 100/zM cAMP (t:]) 
noradrenaline had no effect on insulin secretion at sub- 
stimulatory Ca 2÷ concentration (50 nM), but 
significantly 6O < 0.01) inhibited secretion in the 
presence of 10,uM Ca 2+ (mean + SE, n = 9). (Lower 
panel) Glucose-induced insulin secretion from intact 
islets (20 mM, open bars) was enhanced by 5 mM db- 
cAMP, and totally inhibited by 10/~M noradrenaline. 
Noradrenaline also caused a significant reduction 6o < 
0.05) of  the secretory response to db-cAMP plus 
glucose, but there was still a significant 6o < 0.01) 
stimulation of secretion above basal rates in the presence 
of 2 mM glucose (hatched bar, mean +__ SE, n = 4-6).  

by  c A M P  in the  presence o f  10/~M Ca  z+. 
Howeve r ,  no ra d re na l i ne  d id  not  inhib i t  insulin 
secret ion in response  to  c A M P  at sub - s t imu la to ry  
concen t ra t ions  o f  Ca  2+ ( +  c A M P ,  224 + 38% 
basal ;  + c A M P  + no rad rena l ine ,  226 _+ 46%,  n = 
9). Fig.3 ( lower  panel )  shows the results  o f  ex- 
pe r iments  using in tac t  islets in which glucose-  
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induced (20 mM) insulin secretion was enhanced in 
the presence of 5 mM db-cAMP. Noradrenaline 
(10/zM) completely inhibited glucose-stimulated 
insulin secretion (p > 0.2 vs 2 mM glucose con- 
trois) and significantly reduced (p < 0.05) the 
secretory response to db-cAMP in the presence of  
20 mM glucose. However,  while noradrenaline 
totally abolished glucose-induced secretion, it did 
not completely inhibit the secretory response to db- 
cAMP, since a 3-fold increase in insulin release 
above basal levels (p < 0.01) was observed in the 
presence of  both noradrenaline and db-cAMP. 

4. DISCUSSION 

Despite numerous reports that catecholamines 
inhibit insulin secretion from pancreatic B-cells 
(see [1,2]) the intracellular mechanisms of  this in- 
hibition remain obscure. The catecholamine in- 
hibition of secretion is thought to be a direct effect 
on B-cells [7,14] and to be mediated by 
cez-adrenoreceptors [15,16], as confirmed in the 
present studies by the abolition of the inhibitory 
effects of  noradrenaline by the o~2-receptor an- 
tagonist, yohimbine. In addition to suppressing 
glucose-induced insulin secretion from intact islets, 
noradrenaline also had marked inhibitory effects 
on Ca2+-induced secretion from electrically 
permeabilised islets, as has previously been 
reported in studies using digitonin-treated islets 
[17]. The similar inhibitory effects of  
noradrenaline on insulin secretion f rom both intact 
and permeabilised islets in the present study, and 
the antagonism of these effects by yohimbine, sug- 
gest a similar mode of  action of  the catecholamine 
in the two systems. These also suggest that the elec- 
trically permeabilised islet is a valid model for 
studying the noradrenaline inhibition of  insulin 
secretion. 

A number of  conclusions can be drawn from the 
catecholamine inhibition of CaZ+-induced insulin 
secretion from permeabilised islets. Firstly, elec- 
trically permeabilised islets retain functional 
ce2-adrenoreceptors which are still linked to their 
effector system. Secondly, the intracellular effec- 
tor system through which noradrenaline inhibits 
insulin secretion can function in permeabilised 
cells in which the intracellular environment is in 
equilibrium with an extracellular medium of  de- 
fined composition. Thirdly, the noradrenaline in- 

hibition of insulin secretion from permeabilised 
islets in the presence of  a maximum stimulatory 
concentration of  Ca z÷ [9] suggests that 
noradrenaline reduces the capacity of  B-cells to 
respond to Ca 2÷, and therefore implies that 
noradrenaline does not act primarily by affecting 
cellular C a  z+ handling but at some later stage in 
the secretory process. A similar conclusion has 
recently been drawn from less direct studies using 
intact tissue. Thus, in intact islets, the effects of  
catecholamines on Ca 2÷ uptake [16] or efflux [18] 
could be dissociated from the inhibition of  insulin 
secretion, while fluorescence measurements of  
cytosolic Ca 2÷ in insulin-secreting tumour  cells 
demonstrated that ce2-agonists could inhibit insulin 
secretion without measurably affecting in- 
tracellular concentrations of  Ca 2÷ [19]. 

In other tissues ce2-agonists can act by inhibiting 
adenylate cyclase and thus reducing intracellular 
concentrations of  cAMP [20]. It has been sug- 
gested that a similar mechanism is involved in the 
adrenergic inhibition of insulin secretion since 
cAMP is thought to play an important  role in 
regulating the magnitude of  the B-cell secretory 
response (review [21]). I_n support of  such a 
mechanism, catecholamines have been reported to 
inhibit adenylate cyclase activity in islet 
homogenates [22,23] and to decrease the total 
cAMP content of  isolated islets [24,25] and B-cells 
[7]. However,  the effects of  o~2-agonists on islet 
cAMP are variable and do not always parallel the 
inhibitory effects on insulin secretion [26,27]. Fur- 
thermore,  there have been several reports that 
catecholamines inhibit insulin secretion in the 
presence of membrane-permeable  analogues of  
cAMP [3,15,16], as was confirmed in the present 
studies using intact islets, suggesting that the in- 
hibition of  secretion cannot be solely attributed to 
a decrease in intracellular cAMP. Note, however, 
that in our experiments the noradrenaline inhibi- 
tion of secretion in response to db-cAMP plus 
glucose was only partial, even at a concentration of 
noradrenaline well in excess of  that required to in- 
hibit totally secretion in response to glucose alone. 
Similar results have also been reported in other re- 
cent studies [16] in which the secretory responses to 
db-cAMP were only abolished at concentrations of  
noradrenaline at least an order of  magnitude 
greater than those required to inhibit totally 
glucose-induced insulin secretion, in contrast to 
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earlier reports in which similar concentrations of  
catecholamines totally inhibited db-cAMP- 
induced secretion f rom intact islets [3,15]. 

The conclusion that decreases in intracellular 
cAMP cannot fully account for the inhibition of  
insulin secretion was further supported by our 
studies in permeabilised islets in which the in- 
tracellular concentrations of  cAMP could be 
precisely controlled. Thus, supplying a stimulatory 
concentration of  cAMP to the intracellular com- 
par tment  did not reverse the noradrenaline inhibi- 
tion of  Ca2+-induced insulin secretion, suggesting 
the involvement of  factors other than cAMP in the 
inhibitory mechanism under these conditions. 
However,  the small but significant secretory 
responses of  permeabilised islets to cAMP at sub- 
st imulatory Ca 2+ concentrations were not affected 
by noradrenaline, perhaps suggesting that 
catecholamines preferentially inhibit the normal 
secretory responses of  permeabilised B-cells to 
Ca 2+, rather than to cAMP. cAMP is generally 
thought not to be an initiator of  insulin secretion, 
but to modulate the magnitude of  the B-cell 
secretory response to pr imary stimuli (see [21]), 
perhaps by increasing the sensitivity of  the 
secretory process to Ca 2+ [10,28]. It is therefore 
slightly surprising that cAMP stimulated insulin 
secretion f rom noradrenaline-treated permeabil- 
ised islets which no longer responded to Ca 2+. It 
may be that the responsiveness of  noradrenaline- 
treated permeabilised islets to cAMP reflects two 
opposing effects on the secretory process, with 
cAMP increasing, and noradrenaline decreasing, 
the sensitivity of  the secretory process to Ca 2+. 
Alternatively, it may be that a minor component  of  
the secretory response to cAMP is independent of  
Ca 2+ and is therefore unaffected by the 
catecholamine inhibition of Ca2+-induced 
secretion. 

In conclusion, our experiments using electrically 
permeabilised islets suggest that direct introduc- 
tion of  Ca 2+ or cAMP into the cytosolic compart -  
ment does not fully relieve the catecholamine 
inhibition of insulin secretion, implying that at 
least one component  of  the inhibition occurs at a 
stage of the secretory pathway beyond changes in 
intracellular Ca 2+ or cAMP. The mechanisms by 
which the adrenergic receptor-mediated inhibition 
of  insulin secretion can occur at a late stage of  the 
secretory pathway merit further investigation. 
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