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In accord with the available kinetic and X-ray crystallographic data, it is proposed that the two catalytically 
competent carboxyl groups of aspartic proteases constitute a functional unit which mediates the proton 
from the attacking water molecule to the leaving nitrogen atom of the substrate. Protonation of this nitrogen 
atom has been the main issue of the previous mechanistic proposals. The first step of the present mechanism 
involves proton transfer from the water to the aspartic diad and concurrently another proton transfer from 
the diad to the carbonyl oxygen of the scissile peptide bond. These proton transfers provide the driving 
force for the bond formation between the substrate and water, which leads to the formation of a tetrahedral 
intermediate. The intermediate breaks down to products by a similar facilitation, i.e. by concerted general 
acid-base catalysis, which involves simultaneous proton transfers from the intermediate to the diad and 
from the diad to the leaving nitrogen of the substrate. The symmetrical mechanism of the formation and 

decomposition of the tetrahedral adduct resembles that found in the serine protease catalysis. 

Pepsin; Aspartic protease; Enzyme mechanism 

Aspartic proteases include several important  en- 
zymes, such as pepsin, chymosin, renin, cathepsin 
D and the proteases isolated f rom numerous fungi. 
The amino acid sequences of  all these enzymes are 
homologous,  in particular around the active-site 
residues. Comprehensive reviews on aspartic pro- 
teases have been published [1-3]. The three- 
dimensional structure of  pepsin [4] and three 
microbial aspartic proteases including penicillo- 
pepsin [5,6], Rhizopus chinensin protease [7] and 
Endothiaparasitica protease [7] has been reported. 
The tertiary structures of  pepsin and the microbial 

Correspondence address: L. Polg~ir, Institute of En- 
zymology, Biological Research Center, Hungarian 
Academy of Sciences, PO Box 7, H-1502 Budapest, 
Hungary 

enzymes show a striking similarity to each other. 
The substrate-binding cleft is large enough to ac- 
commodate  polypeptides of  about seven amino 
acid residues. This is consistent with the known 
specificity of  aspartic proteases [1,3]. 

Two catalytically competent aspartyl residues 
are located deep in the centre of  the cleft. The elec- 
tron density maps suggest that the two carboxyl 
groups are hydrogen-bonded [6,8,9]. As indicated 
by pH-dependence studies, the two carboxyl 
groups must react in different forms, one in the 
ionized, and the other in the unionized form [10]. 

Transpeptidation reactions originally appeared 
to offer  an explanation for the catalytic role of  the 
aspartic residues [1]. Notably, it was assumed that 
transpeptidation proceeded either through an 
amino-enzyme or through an acyl-enzyme. The 
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former would contain a covalent peptide bond, the 
latter a covalent acid anhydride bond. The amino- 
enzyme was usually preferred to the acyl-enzyme. 
A covalent intermediate, however, could not be 
trapped, despite several attempts. 

Fruton [11] was the first who questioned the for- 
mation of  a covalent intermediate in the catalysis 
by aspartic proteases. Considerable evidence 
against the formation of covalent intermediate was 
provided by the studies of  ~SO incorporation into 
transpeptidation products of the reactions carried 
out in HzlSO-enriched water [12,13]. Recent NMR 
studies, indicating that water; rather than a car- 
boxyl group, is the nucleophile, have provided ad- 
ditional evidence against covalent intermediate 
formation during catalysis by the aspartic pro- 
teases [14]. X-ray crystallographic studies have 
also suggested that the formation of--a covalent 
acyl- or amino-enzyme is not feasible because of  
steric hindrance [8,15]. 

Since the covalent mechanism is not generally 
discounted [16,17], it is appropriate to point out a 
disadvantage of  the formation of  covalent in- 
termediate. Specifically, the carboxyl group en- 
gaged in the bond formation would be lost as a 
catalyst although facilitation by both carboxyl 
groups, one as a general acid and one as a general 
base, is essential for the hydrolysis of  an amino- 
enzyme. 

The most detailed mechanism, involving the 
stereochemistry of  the catalysis, has been reported 
recently [181. This mechanism, which involves no 
covalent intermediate, is based on the highly re- 
fined crystal structure of penicillopepsin [6] and of 
its complex with a pepstatin fragment at 0.18 nm 
resolution [15]. Pepstatin is a potent transition- 
state analogue inhibitor of aspartic proteases, 
which can be strongly bound in the active-site cleft. 
The binding of  substrate as deduced from the 
binding of pepstatin and a pepstatin analogue pro- 
vides the clue as to how to place the scissile peptide 
bond with respect to the catalytic groups, Asp 32 
and Asp 215 [8,15,18,19]. This binding mode in- 
dicates that it is Asp 32 (pepsin numbering) that 
catalyses the nucleophilic attack by the water 
molecule. Thus, in the enzyme-substrate complex 
Asp 32 would bear the negative charge and Asp 
215 would be protonated. The hydrogen bond be- 
tween the two carboxyl groups appears to prevail 
also in the enzyme-inhibitor complex [15] and 

presumably in the enzyme-substrate complex as 
well. 

It was proposed [18] that the catalytic reaction is 
initiated by the protonation of  the carbonyl oxygen 
of  the substrate, which is in a good position to ac- 
cept the proton from the carboxyl group of Asp 
215. This is followed by the nucleophilic attack of 
a hydroxide ion generated from water by donating 
its proton to Asp 32. The breakdown of  the resul- 
tant tetrahedral intermediate could be accomp- 
lished through two alternative pathways [18]. One 
involves a proton transfer mediated by Asp 215 
from the protonated carbonyl oxygen atom of  the 
tetrahedral intermediate (fig.l), the other in- 
volving protonation from the bulk water. In the 
following discussion the difficulties associated 
with the details of  this mechanism are considered. 

As for the formation of  the tetrahedral in- 
termediate, it is chemically unlikely that protona- 
tion of the substrate carbonyl oxygen would occur 
prior to the nucleophilic attack of the water 
molecule, as suggested [8,18]. The proton 
hydrogen-bonded between the two carboxyl 
groups, and held by the negative charge on them, 
cannot be transferred to the much less basic 
neutral peptide carbonyl oxygen atom without the 
assistance of the water attack. It is even more im- 
probable that a hydroxide ion would be generated 
in the acidic media, where aspartic proteases usual- 
ly operate. All the above problems are eliminated 
if we assume that protonation of  the carbonyl ox- 
ygen and the base-catalysed nucleophilic attack are 
approximately simultaneous processes (fig.2a,b) as 
discussed later. 

The breakdown of  the tetrahedral intermediate 
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Fig.1. Stepwise proton transfers from the protonated 
carbonyl oxygen to the leaving nitrogen atom. The 
arrows show the proton transfer to Asp 215 and the 
subsequent transfer of the same proton to the leaving 

group, as suggested in [18]. 
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Fig.2. Proposed pathway for the catalysis by aspartic proteases. Proton transfers are indicated by arrows. They are 
concerted processes in forms a and c. 

involves more uncertainties; two alternative pro- 
posals for its mechanism have been offered [18]. In 
one of  the alternatives the source for protonation 
of  the leaving nitrogen atom is the bulk solvent 
[18]. However, enzymes rarely use specific acid or 
specific base catalysis in their reactions. Protona- 
tion by bulk water, not aided by an enzymic group, 
is a typical specific acid catalysis. One may argue 
that aspartic proteases operate at low pH, where 
the concentration of  the oxonium ion is sufficient- 
ly high for an effective specific acid catalysis. 
However, the principle of  microscopic reversibility 
[20] prescribes that specific base catalysis, the 
reverse of  specific acid catalysis, .ought to facilitate 
peptide synthesis if the forward reaction is cata- 
lysed by oxonium ions. The reaction of  hydroxide 
ions, however, could hardly be important at acidic 
pH, where peptide synthesis by pepsin takes place 
[21]. 

The other alternative of  the leaving group pro- 
tonation involves proton transfer from the car- 
bonyl oxygen by the participation of  Asp 215 [18]. 
In the first step of  this mechanism the proton is 
transferred to the carboxylate ion of  Asp 215 with 
the resultant formation of  a negative tetrahedral 
adduct (cf. fig.l).  This is followed by a general 
acid catalytic step, i.e. protonation of  the leaving 
nitrogen atom by Asp 215. It should be pointed out 
that the first step of  this mechanism may not be 
feasible for two reasons. (i) From the basic oxygen 
atom of  the tetrahedral intermediate the proton 
cannot be transferred to the acidic carboxyl group 
in the absence of  facilitation, such as the concur- 
rent protonation of  the leaving nitrogen atom. (ii) 
Simultaneous protonation of  both carboxyl groups 

above pH 2 is inconsistent with the pKa values of  
the carboxyl groups, which are less than 2 and be- 
tween 4 and 5, respectively. 

The catalytic pathway proposed below (fig.2) 
overcomes the problems of  the previously sug- 
gested mechanisms and is consistent with all ex- 
perimental data, including those pertinent to the 
stereochemistry of  the catalysis. In the proposed 
mechanism the two catalytically competent car- 
boxyl groups constitute a functional unit, like the 
catalytic triad and the thiolate-imidazolium ion 
pair in the catalyses by serine and cysteine pro- 
teases, respectively [22]. The extraordinarily sym- 
metrical structural details around the two carboxyl 
groups [6,9] suggest that the diad proton may be 
bound covalently to either carboxyl group in the 
free enzyme. In accord with the symmetry of  the 
diad, it is proposed that formation and decomposi- 
tion of  the tetrahedral intermediate are sym- 
metrical processes. Two concurrent proton 
transfers taking place in both the formation and 
breakdown of  the tetrahedral intermediate are the 
essential features of  the catalysis. When the 
substrate is bound properly with respect to the 
catalytic groups, the proton of  the attacking 
nucleophile is accepted by the diad carboxylate 
ion, while the diad proton is donated to the car- 
bonyl oxygen of  the substrate (fig.2a,b). Possible 
concertedness of  the proton transfers, leading to 
hydroxide ion formation, has already been pro- 
posed [8]. By contrast, no hydroxide ion is generat- 
ed in the present mechanism since the proton 
donation to the carboxyl group is coupled with the 
nucleophilic attack on the carbonyl carbon by 
water. This represents a true general base catalysis, 
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which precludes the format ion of high-energy in- 
termediates. The simultaneous proton transfers 
portray a 'push-pull '  general acid-base catalysed 
nucleophilic attack [23]. The breakdown of the 
resultant adduct proceeds by the same mechanism 
(fig.lc,d). The proton f rom the protonated oxya- 
nion is transferred to the diad, while the diad pro- 
ton protonates the leaving nitrogen with the 
concurrent C - N  bond cleavage. In this mechanism 
the protonation of  the nitrogen atom takes place 
not f rom the protonated oxyanion as has been 
previously proposed [18] and shown in fig.l ,  but 
the proton stems f rom the nucleophile and is con- 
veyed to the leaving group by the diad. Thus, the 
mechanism is symmetrical for the formation and 
breakdown of  the tetrahedral intermediate, as both 
processes are facilitated by push-pull general acid- 
base catalyses. 

The symmetry principle emphasized in the above 
mechanism is also characteristic of  the catalysis of  
serine proteases [22]. It is a remarkable advantage 
of  the symmetry of  catalysis that a single func- 
tional unit effects both bond making and bond 
breaking. The mechanism proposed here for aspar- 
tic proteases and that of  serine proteases are also 
similar in that the protonation of  the leaving group 
takes place f rom the nucleophile in both cases, 
with the help of  the diad of  the two carboxyl 
groups and a histidine residue, respectively. 
However,  in serine protease catalysis a single pro- 
ton is transferred, whereas in the case of  aspartic 
proteases two concurrent proton transfers promote  
the formation of  the tetrahedral adduct, as well as 
its breakdown. 
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