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Subnanosecond-resolved fluorescence measurements of the FAD bound in glutathione reductase and lipo- 
amide dehydrogenase revealed characteristic differences in dynamic properties of both enzymes, which are 
considered to have common structural features. The flavin fluorescence in glutathione reductase is quenched 
mainly via a dynamic mechanism, in agreement with enhanced flexibility of the flavin as inferred from rapid 

depolarization of the fluorescence. 
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1. INTRODUCTION 

Glutathione reductase and lipoamide dehydro- 
genase are FAD containing flavoproteins, which 
have been extensively studied [1-3]. While both 
enzymes catalyze different reactions, the structure 
of  the active site shows common features in the 
two proteins. A disulfide bridge between two cys- 
teines is in close contact with FAD. Electrons sup- 
plied by NADH (lipoamide dehydrogenase) or by 
N A D P H  (glutathione reductase) are transferred 
from reduced FAD to the vicinal cystine residue 
and then to the other substrate, lipoic acid and 
glutathione, respectively. 

The 3-dimensional structure of  glutathione 
reductase has been solved at high resolution [2]. 
The functional form is a dimeric protein of  
100 kDa. Both subunits are involved in binding 
glutathione. Both FAD and NADPH are bound in 
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an extended conformation to the enzyme. 
Lipoamide dehydrogenase is a constituent of  the 
pyruvate dehydrogenase multienzyme complex. In 
the reaction catalyzed by the complex the electron 
flow is from dihydrolipoamide, covalently bound 
to the complex, to NAD +. The enzyme, isolated 
from the complex, is dimeric, as well, with a 
molecular mass of  102.5 kDa. The lipoamide 
dehydrogenase from Azotobacter  vinelandii has 
been crystallized [4]. 

In this letter we describe a study on static and 
time-resolved fluorescence properties of  gluta- 
thione reductase from human erythrocytes and 
lipoamide dehydrogenase from Escherichia coli. 
Because of  the contact between the cystine sulfur 
atoms and the flavin, the FAD fluorescence is ex- 
pected to be strongly quenched [5]. This is indeed 
the case for glutathione reductase. In lipoamide 
dehydrogenase, however, the fluorescence quan- 
tum yield is relatively high. Also the average 
fluorescence lifetime is quite long [6]. Our time- 
resolved fluorescence and fluorescence anisotropy 
results provide clear evidence, that the flavin 
microenvironments in both enzymes are different. 
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2. MATERIALS AND METHODS 

Glutathione reductase from human erythrocytes 
was a gift from Dr B. Mannervik, University of  
Stockholm. Lipoamide dehydrogenase was re- 
solved from the pyruvate dehydrogenase complex 
according to standard procedures [7]. Both en- 
zymes were used as 0 .1-1 /zM solutions in 50 mM 
potassium phosphate, pH 7.0, containing 0.5 mM 
EDTA. 

Fluorescence spectra were measured on an 
Aminco SPF-500 spectrofluorimeter. In time- 
resolved fluorescence experiments the line at 
458 nm of a mode-locked argon ion laser was used 
to excite the samples. The fluorescence was 
monitored via a 531 nm interference filter. Details 
of  the experimental set-up and the single photon 
detection method have been presented elsewhere 
[8]. Data analysis was performed as described [9]. 

Table 1 

Fluorescence characteristics of glutathione reductase 
(GR) and lipoamide dehydrogenase (LD) at 20°C 

Steady-state fluorescence 

Wavelength emission Relative quantum 
maximum (nm) efficiency (%) 

GR 520 7.7 
LD 520 100 

Fluorescence lifetimes 

r Average r 
(ns) (ns) 

GR 0.949 _+ 0.09 0.048 _+ 0.003 0.11 
0.037 _+ 0.003 0.66 _+ 0.03 
0.011 _+ 0.001 2.3 +_ 0.3 
0.003 + 0.001 5.5 _+ 0.9 

3. RESULTS AND DISCUSSION 

3.1. Steady-state fluorescence 
The FAD fluorescence spectra taken from both 

enzymes revealed no difference in emission max- 
ima (located at about 520 nm) or change in spec- 
tral shape (characteristic shoulder at 545 nm). The 
fluorescence quantum efficiencies, however, are 
widely different. The fluorescence quantum effi- 
ciency of  glutathione reductase is only 7.7070 of  
that of  lipoamide dehydrogenase (taken as 100°70, 
see table 1). 

3.2. Fluorescence decay 
In fig.1 the time-resolved fluorescence patterns 

and corresponding fits of  both enzymes are 
presented. The fluorescence decays are in both 
cases complex. 

For glutathione reductase a decay model of  three 
exponential terms was not sufficient to obtain an 
optimum fit. A sum of four exponential functions 
with lifetimes and relative amplitudes as listed in 
table 1 had to be used. It is difficult to provide a 
good physical description of  this multiexponential 
decay. The fluorescence decay is dominated by a 
short lifetime component. The shortening of  the 
fluorescence lifetime from e.g. 4.7 ns (FMN in 
water [10]) to 50 ps must be ascribed to dynamic 
quenching by, for instance, sulfur atoms of  cystine 
or cysteine residues. In general, dynamic quench- 

LD 0.35 _+ 0.03 0.15 _ 0.02 1.82 
0.24 _+ 0.01 1.54 _+ 0.08 
0.41 _+ 0.01 3.39 _+ 0.03 

Correlation times 

fll ~1 f12 #2 
(ns) (ns) 

GR 0.32 _+ 0.01 3.57 _+ 0.04 - - 

LD 0.32 _+ 0.01 24.4 _+ 0.6 - - 
0.11 + 0.03 12 _+ 3 0.21 +_ 0.03 39 

Standard deviations are derived from fit 

Average r = ~ i ~ i l ' i  

ing is dictated by a diffusion-controlled colli- 
sional mechanism leading to shortening of  the 
fluorescence lifetime. In a protein the quenching of  
the FAD fluorescence is caused by the amino acid 
residues in the vicinity of  the flavin and unlimited 
diffusion is excluded because of  the spatial con- 
straints imposed by the polypeptide chain. 
Hindered diffusion may be in part responsible for 
the nonexponential decay pattern. The four- 
component fit must be considered as a purely 
mathematical description and it indicates a 
multitude of  microenvironments of  the flavin. A 
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Fig.1. Fluorescence decay curves and their fits of 
glutathione reductase from human erythrocytes (curve 
b) and lipoamide dehydrogenase from E. coil (curve c). 
Also the laser excitation response curve is shown (curve 
a). The fit to the fluorescence of glutathione reductase is 
a sum of four exponential terms; the fluorescence of 
lipoamide dehydrogenase was fitted to a triple 
exponential function. Time constants (r) and relative 

amplitudes (o0 are collected in table 1. 

lifetime distribution may be a better representa- 
tion, although the distribution is expected to be 
broad.  In earlier studies we have shown that the 
fluorescence decay of  FAD in lipoamide 
dehydrogenase is heterogeneous as well [11]. For 
an op t imum fit a triple exponential function had to 
be used (parameters in table 1). The contribution 
of  the short lifetime component  is smaller than for 
glutathione reductase, indicating that the dynamic 
quenching mechanism is less efficient in lipoamide 
dehydrogenase. The same arguments as for 
glutathione reductase hold for this flavoprotein. A 
distribution of  lifetimes ranging f rom 0.2 to 5.0 ns 
may be a better description than three lifetime 
components  as presented in table I. 

The ratio of  average lifetimes of  both proteins 
appropriately reflects the ratio of  quantum effi- 
ciencies of  the flavin fluorescence in both enzymes 
(see table 1). 

3.3. Fluorescence anisotropy decay 
Assuming homogeneous rotation, i.e. all 

fluorescence lifetime components  are associated 
with the same rotation, the anisotropy decays of  
both proteins gave rise to surprisingly simple pat- 
terns as illustrated in fig.2 for both enzymes. 

Fig.2. Fluorescence anisotropy decay curves (noisy 
curves) and their fits (smooth lines) of glutathione 
reductase (a) and lipoamide dehydrogenase (b). In both 
enzymes the anisotropy decay is exponential with 

correlation times (~) collected in table I. 

The fluorescence anisotropy decay of  
glutathione reductase can be fitted to a single ex- 
ponential function with a correlation time of  
3.6 ns (also listed in table 1). A time constant o f  
3.6 ns is too short to account for rotation of  the 
whole protein. The correlation time of the whole 
protein can be calculated to be in the order of  38 ns 
at 20°C on the basis of  an empirical formula  
relating correlation time ~ with the M, of  a 
hydrated, spherical protein: q~ (in ns) = 3.84 x 
10-4.Mr [12]. The about  10-fold shorter correla- 
tion time suggests that a segmental motion of  the 
protein is the predominant  type of  rotational 
dynamics of  the enzyme-bound FAD. Depolariza- 
tion owing to energy transfer f rom one FAD to the 
other within the dimeric protein can be excluded, 
since the anisotropy decays to zero. When energy 
transfer among rigidly held chromophores  takes 
place, the anisotropy decays to a constant 
anisotropy [13]. 

As in glutathione reductase the initial anisotropy 
decay of  lipoamide dehydrogenase can be inter- 
preted more unambiguously than the fluorescence 
decay pattern, since a single exponential decay is 
observed. The recovered correlation time of  24 ns, 
however, is too short to account for a spherical 
rotor of  102 kDa (39 ns at 20°C, see also table 1). 
Exactly the same result was obtained earlier for the 
.4zotobacter vinelandii l ipoamide dehydrogenase 
[14,15]. The shorter correlation time than expected 
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was ascribed to a hinged subunit movement .  We 
have quantified this motion by fitting the ex- 
perimental data according to a biexponential decay 
model. The anisotropy decay could be fitted equal- 
ly well with a fixed correlation time of  39 ns and 
a shorter correlation time of  12 ns (see table 1). 
The 12 ns correlation time can tentatively be inter- 
preted by a restricted subunit motion.  The angular 
amplitude of  this motion follows f rom the preex- 
ponential factor of  the longer correlation time ac- 
cording to a relation as derived earlier [16]. From 
the data in table 1 the amplitude amounts to 30 °. 

4. CONCLUSION 

The flavin binding sites of  glutathione reductase 
and lipoamide dehydrogenase have different 
dynamic properties as revealed with time-resolved 
FAD fluorescence. The fluorescence of  FAD in 
glutathione reductase is quenched via a 
predominantly dynamic mechanism as deduced 
f rom the shorter average fluorescence lifetime. In 
agreement with this dynamic quenching is the fact 
that the FAD is more flexibly bound in glutathione 
reductase than in lipoamide dehydrogenase. It 
would be interesting to investigate whether such a 
distinction could be inferred f rom the X-ray dif- 
fraction results of  crystalline A. vinelandii 
l ipoamide dehydrogenase. 
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