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The effect of pH on the conformation of ricin and its A- and B-chains has been studied by measuring their 
intrinsic fluorescence. At pH 5.0 and 7.5, the structural stability of toxin and subunits was estimated accord- 
ing to the denaturing action of guanidine hydrochloride. It was demonstrated that the fluorescence of native 
toxin and catalytic A-subunit does not depend significantly on pH in the range pH 3-8, whereas ricin B- 
chain undergoes a structural transition at pH < 5.0. The structural stability of ricin and isolated chains 
differs significantly at pH 7.5 and 5.0; the structural stability of ricin and the A-chain increases, whereas 

that of the B-chain decreases. 

Ricin; Protein fluorescence; pH effect; Guanidine hydrochloride 

1. I N T R O D U C T I O N  

The molecules of  the plant toxin ricin consist of  
two polypeptide chains, A-chain (Mr 30625) and B- 
chain (Mr 31358), which are bound by one 
disulfide bond.  Isolated A-subunit,  entering the 
cytoplasm, catalytically inactivates the 60 S 
subunit of  the ribosomes [1,2]. B-subunit binds to 
terminal residues of  galactose on glycoproteins and 
glycolipids located on the cell surface [3], and, 
evidently, promotes  t ransmembrane transfer of  the 
A-chain [4]. It has been demonstrated that toxins 
penetrate into a cell through receptor-dependent 
endocytosis [5]. Indirect p roof  is available that en- 
dosomes at pH 5 are the most  probable  site for 
t ransmembrane transfer o f  the toxin A-chain into 
the cytoplasm [6]. In spite of  much similarity in the 
general structure, toxins react differently to the 
elevation of  pH by lysosomotropic amines in 
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cellular organelles, which have low pH values 
under normal conditions. Treatment  with NH4CI 
protects cells f rom the cytotoxic action of  
diphtheria toxin and modecin [6,7], but does not 
have any noticeable effect on the activity of  abrin 
and ricin [7,81. In addition, it has been shown that 
such treatment leads to enhancement of  the action 
of  some immunotoxin preparations containing the 
ricin A-chain [9]. It has been demonstrated that at 
pH 5 essential changes occur in the structure of  
diphtheria toxin [10,11]. The present study is 
devoted to the investigation of  pH effects on the 
structure of  native ricin and its isolated subunits. 

2. E X P E R I M E N T A L  

2.1. Isolation o f  ricin and subunits 
Ricin f rom Ricinus comrnunis was obtained ac- 

cording to [12]. A- and B-subunits were isolated as 
described in [13]. The purity of  the obtained 
preparations was estimated using electrophoresis 
in polyacrylamide gel in the presence of  SDS [14]. 
The amount  of  dimers in preparations of  isolated 
chains was measured using liquid chromatography 
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under high pressure (Altex, model 100A, USA; 
TSK-2000 column, 7.5 x 600 mm). B-chain dimers 
were practically absent in the preparation of  ricin, 
while their content in A-chain preparations was no 
more than 20%. 

Diphtheria toxin, kindly supplied by Yu.A. 
Khavkin, was tested electrophoretically and used 
without additional purification. 

2.2. Intrinsic protein fluorescence 
The fluorescence spectra, corrected for the spec- 

tral sensitivity of  the instrument, were registered 
using an Aminco SPF-500 spectrofluorimeter 
(USA) equipped with a standard quartz cuvette 
(1 x 1 cm). All measurements were performed at 
25°C. Fluorescence was excited by light from a 
xenon lamp at 280 or 295 nm. The intensities of  
the corrected spectra were proportional  to the 
number  of  photons emitted per unit wavelength in- 
terval. The absolute values of  the fluorescence 
quantum yield were determined by the com- 
parative method [16], assuming that the quantum 
yield of  t ryptophan in neutral water solutions is 
equal to 0.2 at 25°C [17]. 

Toxin solutions were prepared in 25 mM Na- 
phosphate or Na-acetate buffer with addition of  
100raM NaC1. During fluorometric titration 
microadditions of  1 M HCI and 1 M N a O H  were 
performed in the cuvette; the dilution did not ex- 
ceed I o70 and pH was registered using a Radelkis 
OP-211/1 pH-meter  (Hungary).  The absorbances 
of  solutions were determined with a Beckman 
DU-8B spectrophotometer  (USA). 

3. RESULTS AND DISCUSSION 

3.1. Fluorescence spectra 
Table 1 lists the fluorescence characteristics of  

ricin, its fragments and diphtheria toxin measured 
with excitation at 280 and 295 nm. Tyrosine 
residues in these proteins seem to give a very small 
contribution to the total emission. The 
fluorescence of  tyrosine residues of  the ricin A- 
chain is equal to 20°70 of  the total emission, and all 
of  its fluorescence parameters are significantly 
changed (see table 1). 

Addition of  50 mM lactose to the solutions of  
ricin and its subunits does not affect their spectral 
parameters practically. Change in ionic strength of 
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Table 1 

Fluorescence parameters of ricin, its subunits and 
diphtheria toxin at pH 7.5 

Protein A e x  A m a x  A A  Quantum 
(nm) (_+1 nm) (_+1 nm) yield, q 

( -+ 10O7o) 

Ricin 295 329 50 0.28 
280 329 52 0.21 

B-chain 295 330 50 0.20 
280 330 51 0.20 

A-chain 295 328 46 0.29 
280 323 52 0.11 

Diphtheria 
toxin 295 327 50 0.065 
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Fig. 1. Effect of pH on toxin fluorescence. (A) Position 
of spectral maximum; (B) fluorescence quantum yield: 
1, ricin A-chain; 2, ricin; 3, ricin B-chain; 4, diphtheria 
toxin. Measurement conditions are described in section 

2. Protein concentrations -20/zM. 
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the solution from 0.05 to 0.4 at pH 7.5 also has no 
influence on the fluorescence characteristics. 

The short-wavelength position of the spectral 
maxima (328-330 nm) and high values of the 
fluorescence quantum yield indicate that tryp- 
tophan residues in ricin and its subunits are local- 
ized in the region of protein molecules, which are 
inaccessible to water molecules and have rather 
low mobility. 

3.2. Effect of pH 
Fig.1 shows the dependence of the spectral 

parameters of ricin, its A- and B-chains and 
diphtheria toxin on pH. The pH-induced changes 
in fluorescence quantum yield for ricin and its A- 
chain are identical (fig.lB, curves 1,2). These 
changes occur, in fact, without change in the posi- 
tion and shape of the spectra over a wide range of 
pH from 3 to 10 (fig.lA, curves 1,2), which 
evidently indicates the absence of significant struc- 
tural rearrangement in the environment of tryp- 
tophan residues in this pH range. A drop of 
fluorescence quantum yield by about 15% in the 
pH region from 8 to 5 for all studied proteins is, 
presumably, caused by protonation of the im- 
idazole rings of histidine residues (pK 6.5) [18]. 
For ricin B-chain, this is most likely caused by pro- 
tonation of the imidazole of His-251 located near 
Trp-249. Further decrease in fluorescence yield at 
pH < 3 seems to be associated with quenching by 
free protons in the solution [19]. 

In the alkaline range of pH from 8 to 10 the 
quantum yield decreases for all studied proteins 
(fig.lB). For ricin and its B-chain this is accom- 
panied by an insignificant red shift of their spectra 
(2 nm) (fig.lA, curves 2,3) which is probably 
caused by deprotonation of the amino groups of 
lysine residues, guanidine groups of arginine 
residues and the phenol group of tyrosine residues 
which quench the fluorescence of tryptophan 
residues in the deprotonated form [20,21]. 

The pH dependence of the fluorescence 
parameters for ricin B-chain exhibits peculiarities 
in the pH region below 5. A decrease in quantum 
yield of the B-chain fluorescence in this region 
(fig.lB, curve 3) is accompanied by a shift of the 
spectrum towards longer wavelengths (6 nm) 
(fig.lA, curve 3), which suggests unfolding of the 
protein structure near tryptophan residues. Similar 
changes also occur in diphtheria toxin at pH < 6 
(fig.lA,B, curves 4), which is in good agreement 
with the data in [12] and data for cholera toxin 
[22]. As shown in table 2, the pH dependence of 
the fluorescence of ricin and its fragments is less 
pronounced than that for other toxins. However, 
the present data demonstrate that the ricin B-chain 
undergoes a structural transition in acid media (pK 
4). The binding of ricin B-chain to lactose does not 
affect the pH dependence of fluorescence. 

3.3. Denaturation by guanidine hydrochloride 
Figs 2 and 3 demonstrate that the increase in 

Table 2 

Effect of pH on quantum yield of fluorescence of various toxins (excitation 
wavelength 295 nm) 

Protein (qpH7.5 -- qpH5) /  (qpHT.5 -- qvn3.5)/ The amount of 
qpHT.5 qpH7.5 residues per 

molecule 

Trp His 

Ricin 0.125 0.13 7 6 
Ricin A-chain 0.12 0.12 1 4 
Ricin B-chain 0.20 0.325 6 2 
Diphtheria toxin 0.31 0.54 5 14 
Cholera toxin a 0.30 0.64 7 30 
Cholera toxin* 

B-chain 0.45 0.64 1 4 

* Data from [221 
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Fig.2. Effect of guanidine hydrochloride on fluorescence 
of ricin and its subunits at pH 7.5. (A) Position of 
spectral maximum; (B) fluorescence quantum yield; 1, 
ricin B-chain; 2, ricin A-chain; 3, ricin B-chain + 50 mM 

lactose; 4, ricin; 5, ricin + 50 mM lactose. 
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Fig.3. Effect of guanidine hydrochloride on fluorescence 
of ricin and its subunits at pH 5.0. (A) Change in 
position of spectral maximum; (B) change in quantum 
yield; l, ricin B-chain; 2, ricin B-chain + 50 mM lactose; 

3, ricin A-chain; 4, ricin; 5, ricin + 50 mM lactose. 

concentration of  guanidine hydrochloride results 
in a typical denaturational shift of  the protein 
spectra towards a position characteristic of  free 
t ryptophan (353 nm) (figs 2A,3A). From the data 
in figs 2 and 3, it is clearly seen that at pH 5 the 
effect o f  the binding of  lactose on protein 
denaturation is less pronounced in comparison 
with that at pH 7.5. 

Thus, the above data show that at two different 
pH values, 7.5 and 5.0, the stability of  the struc- 
ture of  ricin and its subunits is significantly dif- 
ferent and the decrease of  pH up to 5.0 results in 

increased stability of  the ricin and A-chain struc- 
ture and decreased stability of  the B-chain struc- 
ture. These results demonstrate the interdepen- 
dence of the A- and B-chains of  ricin. 
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