
Volume 215, number 1, 83-87 FEB 04609 May 1987 

Fast abortive initiation of uvrA promoter in a supercoiled 
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In order to follow the fast kinetics of abortive initiation (lag time from 1 ms to l0 s), we have built a stopped- 
flow apparatus equipped for fluorescence detection. The small volume used for each assay (35 #l), and the 
short dead time (~  0.5 ms) are the essential advantages of this apparatus. Supercoiling of DNA affects consid- 
erably the initiation of transcription from the uvrA promoter. It decreases the lag time due to the isomer- 
isation process 3-fold. Nevertheless, it does not change significantly the product gBk2, which is indicative 
of promoter strength and shows that uvrA is an 'association-limited' promoter. The presence of the LexA 
repressor increases the lag time considerably. At least for small RNA polymerase concentrations this in- 

crease is stronger for supercoiled than for linearized DNA. 
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1. I N T R O D U C T I O N  

The regulation of  transcription initiation f rom 
bacterial promoters  by the E. coli RNA 
polymerase can occur in many different ways. At 
every moment  the cell must be able to adapt  its 
machinery to any environmental change, to satisfy 
all the needs with the lowest loss of  energy. 

The promoter  sequence has been assumed so far 
to be associated with an intrinsic ' p romoter  
strength' .  Indeed, correlations were found between 
the values of  transcription parameters  and devia- 
tions f rom the so-called consensus sequences [1,2]. 

(i) This strength can be modulated by several ex- 
ternal actions: perturbations of  the medium 
(temperature, ionic strength, pH),  which can occur 
in the cell and which have been largely studied in 
vitro [3-5]. 

Correspondence address: E. Bertrand-Burggraf, Institut 
de Biologic Mol~culaire et Cellulaire du CNRS, 
Laboratoire de Biophysique, 15 rue Ren6-Descartes, 
67084 Strasbourg C6dex, France 

(ii) Three-dimensional variations of  DNA struc- 
ture, like DNA supercoiling [3,4]. 

(iii) Effector  (repressors or activators) proteins 
which are, in some cases, responsible for a major  
part  of  the transcription regulation [6-9]. 

The uvrA gene belongs to the SOS system, 
formed by at least 15 genes, all negatively 
regulated by the LexA protein. Activation of  these 
genes is obtained during the induction of the SOS 
system by the cleavage of  LexA in the presence of  
another protein (the activated form of  RecA) 
(reviews [10,11]). 

Recently, we have followed the initiation of  
transcription of  the uvrA gene, on a linear 
plasmid, by abortive initiation with a fluorescence 
assay, as well as its regulation by the LexA 
repressor [6]. 

In the absence of  any repressor molecule, and on 
linear DNA the uvrA promoter  appears to be an 
'association-limited'  promoter ,  with lag times in 
the range of  50-100 s. With the same uvrA pro- 
moter  on supercoiled DNA these lag times are con- 
siderably lowered, so that these measurements 
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were not possible without a rapid mixing system. A 
new stopped-flow apparatus was used for this 
study, and is described here. We show by these 
stopped-flow fluorescence measurements,  that on 
supercoiled DNA lag times are lowered by a factor 
of  four to five without really affecting the product 
Knk2. The effect of  LexA on this transcription was 
also followed. 

2. MATERIALS AND M E T H O D S  

2.1. Materials 
Plasmid pA7galk containing the uvrA promoter-  

operator  region was a generous gift f rom Backen- 
dorf  et al. [12]. 

The RNA polymerase was extracted f rom a K12 
strain of  E. coil, according to Burgess and Jen- 
drisak [13]. The specific activity on calf thymus 
DNA was 899 U/mg ,  where 1 unit is equivalent to 
1 nmol UTP incorporated in l0 min. 

LexA repressor was purified according to 
Schnarr et al. [14]. 

Unlabeled nucleoside triphosphates and dinu- 
cleotide monophosphates  were purchased f rom 
Sigma and P.L. Chemicals, respectively. 

ANS (1-naphthylamine-5-sulfonic acid) was 
f rom FIuka. UTP yANS  was prepared as described 
by Yarbrough et al. [15]. 

fluorescence detection has been developed in our 
laboratory.  In order to restrict the quantities of  
biological product necessary and to minimise the 
dead time of  the measuremets,  a Giken (Union 
Giken) type mixing system was used [17]. The two 
solutions, subjected to appropriate nitrogen 
pressure, are introduced together in the cell 
through a classical injector system, and the flow of  
solution is controlled by an opposite nitrogen 
pressure on an electro-pneumatic valve at the exit 
of  the cell. 

(i) Before mixing the two solutions are stocked 
in two identical 5 ml compartments.  The two solu- 
tions are isolated from each other by two conical 
flood-gates in order to avoid contamination after 
mixing, during the acquisition. The whole system 
is thermostatted by water circulation. 

(ii) The electro-pneumatic valve acts like an elec- 
tromagnetic loudspeaker. The magnet is wrapped 
in an enclosure closed with an undulating mem- 
brane. A moving coil is fixed on one side of  the 
membrane and the valve itself on the other. The 
time required for opening and closing of  the valve 
is less than 1 ms. 

(ii) As shown in f ig. l ,  the measurement cell is 
constituted of  a hollow silica cylinder, which has a 
length of  0.6 cm and an external diameter of  
0.8 cm. The central hole has a diameter of  0.2 cm 

2.2. Abortive initiation assays 
As reported previously [3,4,6,16], this technique 

relies on the production of  short oligonucleotides. 
In our case, using the dinucleotide GpU as starting 
nucleotide and U TP yANS  for elongation, leads to 
the tetranucleotide G p U p U p U  for the uvrA pro- 
moter.  Standard ' transcription buffer '  was: 
5 0 m M  Hepes (pH 7.9), 0 . 4 m M  potassium 
phosphate buffer,  10 mM MgCI2, 1 mM 
dithiothreitol, 100 mM NaCI, 100/zg/ml bovine 
serum albumin (BSA), 0.5 mM GpU and 0.1 mM 
U TPyANS as elongating nucleotide. The DNA 
template, in standard buffer,  was 2.6 nM in 
plasmids and RNA polymerase concentration 
varied f rom 50 to 300 nM, in the same buffer.  
After  equilibration at 37°C, the RNA polymerase 
was directly mixed with DNA in the stopped-flow 
fluorescence cell. 

2.3. Stopped-flow apparatus 
A stopped-flow apparatus equipped with 

Fig.1. The measurement head. The three araldite 
cylinders are in place. At the center, one can see the axial 
hole, through which excitation light will pass. The place 
for optical filters as well as the exit of the evacuation 
channel is also shown. The big circular hole is generally 

closed by the optical filter holder. 
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and one of  its ends is lighted to the exit of  the mix- 
ing system. The total volume necessary for one 
assay is about 35/A (20 #I cell volume + 15/zl dead 
volume). 

The measurement head is made of  three araldite 
cylinders which are fitted together like Russian 
dolls. 

The cylindrical cell is embedded in the first one 
(internal one). Eight collimating slits (0.05 × 
0.6 cm), cut parallel to the cylinder length and 
whose radial directions are 0 and ~-, T/6  and 5~-/6, 
zr/3 and 2~-/3, ~-/2 and 3~-/2, define four observa- 
tion channels. 

The intermediate araldite cylinder presents eight 
corresponding slits which can accommodate optic 
filters. 

On the last araldite cylinder (outside one) are 
fixed eight photodiode assemblies (Hamamatsu 
type 1227/16BQ). Each one offers a 0.11 × 
0.59 cm sensitive surface and is characterized by a 
wide UV response. 

The three coaxial cylindrical araldite blocks are 
moulded in aluminium alloy matrices with araldite 
M (Araldite resin R.T.M.,  Ciba Geigy), filled by 
5 °7o (w/w) of  carbon black (carbon black vulcan 3 
was a gift from Cabot France). 

The draining of  the solution is made through an 
inox needle, incorporated in the araldite so that the 
change of  solution is total at each shot. The signal 
can be analysed either for each of  the four chan- 
nels, or as a summation of  the signal over the four 
channels. The excitation light is given by an Xe 
lamp, lighting an HRS monochromator  (Jobin 
Yvon). An optical feedback loop stabilizes the in- 
tensity of the excitation light. 

The data are recorded with a Data 6000 digital 
oscillograph, which determines the sampling 
period and executes the analog-to-digital con- 
version. 

A host computer assumes the full 'menu'  pro- 
gram of  the Data 6000, the transfer of  the data via 
an IEEE-488 bus, and the processing of the data. 

3. RESULTS AND DISCUSSION 

3.1. Preliminary checkings 
As a preliminary control, we have checked that 

neither the rapid mixing by shearing nor exposure 
of  the solution to a light beam by photolysis alters 
the material in any significant way. 

(i) UTPg, ANS is not hydrolysed, in the absence 
of  any transcriptional activity during the mixing 
time, and after 2 h of  exposure to the light beam. 

(ii) As another control of  the integrity of  the 
material after mixing, we have tested abortive in- 
itiation of a linearized pA7galk plasmid, and the 
measured lag times were the same as those 
previously described using a hand-mixing device 
[6]. 

3.2. Stopped-flow study of  abortive initiation of  
the uvrA promoter 

Fig.2 shows the time course of abortive initia- 
tion of  transcription from the uvrA promoter  in a 
supercoiled plasmid as measured by the 
fluorescence increase of  the ANS marker, due to 
the hydrolysis of  UTP7ANS during the synthesis 
of  the oligonucleotide GpUpUpU. 

One can observe (fig.3) that, in comparison with 
many other promoters,  the lag times observed on 
a supercoiled uvrA promoter  are rather short 
(10-45 s). On the other hand, the formation of  the 
open complex is systematically 4-5-times faster for 
the supercoiled than for the linearised uvrA pro- 
moter [61. 

Using the classical treatment of  abortive initia- 

If 

50 lOOi 150tsec 

Fig.2. Kinetics of RPo formation on the supercoiled 
uvrA promoter, followed with the stopped-flow 
apparatus. The product is GpUpUpU. The pATgalk 
DNA was 2.6 nM, and RNA polymerase 300 nM, in the 
standard transcription buffer. This recording was 
obtained with a sampling time of 300ms, and 
corresponds to the accumulation of 4 kinetics. The 
pressure applied on the solutions was 7 bar. The best fit 

of data was obtained with a lag time of 12 s. 
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Fig.3. Plot of r (s) obtained for the supercoiled uvrA 
promoter. The lag times observed for GpUpUpU 
synthesis are plotted vs the reciprocal of the RNA 

polymerase concentration. 

tion, proposed by McClure [16], which is based on 
the two-step mechanism: 

R + P .K~ RPc .k2' RPo 
k-2 

where R represents the RNA polymerase, P the 
promoter,  RPc the closed complex and RPo the 
open complex. The binding constant Ka as well as 
the isomerization rate k2 between RPc and RPo, 
can be determined from the relation: 

1 1 

k2 k2KB [R] 

The lag time considered here is in fact the one 
observed at the beginning of  the abortive initiation 
kinetics (see fig.2). 

Table 1 shows the parameters determined from 
plots of  r vs 1/[R]. If supercoiling increases con- 
siderably the rate of  isomerisation k2 of  the uvrA 
promoter,  it decreases in a comparable manner the 
association constant KB. As in the case of  the bla 
(ACAA) promoter  and of  the RNA 1 promoter 
[19], the two parameters Kn and k2 are apparently 
linked. These important but opposite effects of 
negative superhelicity observed lead to a relative 
constancy of the product KBk2. If one considers 
the correlation between this product Kak2 and the 
promoter  strength as discussed by Mulligan et al. 
[1], supercoiling has only a small effect on the 
transcription initiation of  such promoters. 

It should be stressed that the analysis of  the 
uvrA promoter on a supercoiled plasmid might be 
complicated by the presence of  a divergent pro- 

Table 1 

Kinetic parameters 

KB (M -l) k2 (s -l) kzKa (M-l.s -~) 

uvrA(1) 1.5 X 10 7 2.7 X l0  -2 4 × l05 

uvrA(s)  5.7 )< 106 10.5 × 10 -2 5.98 × 105 

Kinetic parameters of transcription initiation at the uvrA 
promoter in standard transcription buffer (uvrA(l) and 
uvrA(s) are respectively uvrA promoter on linear (from 

[6]) or supercoiled DNA) 

moter of  the gene coding for the single-strand 
binding protein (ssb). The activity of  this promoter  
has been determined in vivo by S~ nuclease 
mapping [18] whereas so far no transcriptional ac- 
tivity has been detected in vitro on linearized 
templates. This ssb promoter  lies very close to the 
uvrA promoter  at a distance of 7 base pairs bet- 
ween the two ( -  35) regions. The occupancy of the 
two promoters by RNA polymerase may thus be 
mutually exclusive. 
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