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Photoinhibition: Impairment of the primary charge 
separation between P-680 and pheophytin in photosystem II 

of chloroplasts 
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The question of the primary site of photoinhibition was investigated using the light-induced absorbance 
change of pheophytin a (at 685 nm) in spinach chloroplasts and Chlamydomonas reinhardtii cells. Photoinhi- 
bition of spinach thylakoid membranes resulted in a parallel decrease in the amplitude of the pheophytin 
a (AA685) and QA (AA3zo) photoreduction signals. In intact Chlamydomonas reinhardtii cells the pheophytin 
photoreduction and oxygen evolution activity exhibited a similar decrease during photoinhibition. A com- 
plete recovery of both activities was attained within 60 min incubation in normal growth conditions. It is 
concluded that the primary site of photoinhibition involves the components (P-680 and/or pheophytin) of 

the primary charge separation. 
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1. I N T R O D U C T I O N  

Photoinhibition was originally described by Kok 
[1] as a decrease in the rate of  photosynthesis of  
green algae when exposed to high light intensities. 
The adverse response to high light was also ob- 
served in higher plants. Fluorescence and /or  elec- 
tron transport  measurements indicated that the site 
of  high-light-induced damage is located at or near 
PS II [2]. The molecular mechanism of pho- 
toinhibition has attracted considerable attention 
recently. In this respect, two schools of  thought 
prevail. One [3] postulates that photoinhibition 
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results from a light-dependent damage to the 
plastoquinone binding site of  PS II (Qa-binding 
protein). Loss of  function of  the Qa-binding site in 
the 32 kDa apoprotein of  PS II would lower the 
rate of  PS II electron flow and, therefore, overall 
photosynthesis. According to this model, pho- 
toinhibition does not entail damage to the donor 
side or to the reaction center of  PS II [3]. The at- 
tractive aspect of  this model is the connection of  
photoinhibition with the rapid turnover of  the 
32 kDa QB-binding protein, a phenomenon 
observed under physiological conditions [4]. 

A large group of investigators, however, ad- 
vocate a primary site of  photoinhibition closer to 
the photochemical reaction center of  PS II 
[2,5-7]. Recent work f rom this laboratory has 
shown that photoinhibition of photosynthesis is 
manifested by a lowered amplitude of  the 
photoreduction of  the pr imary quinone acceptor 
QA of PS II [7]. Until now, this measurement has 
been the most direct and localized test on the 
pr imary site of  photoinhibition because it probed 
the function of  the charge separation between 
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P-680, pheophytin and QA in the PS II reaction 
center. The PS II charge separation reaction is 
summarized as follows: 

P680".  Pheo.  QA ---~ P680 +" P h e o - -  QA 

P680 +. Pheo.  Q;, 

Since photoinhibition adversely affected the for- 
mat ion of  semiquinone anion (Q~,), it was conclud- 
ed that the mechanism of  photoinhibition involves 
a direct photochemical reaction center inactivation 
[7] and that any photoinhibition-related effects on 
the reducing side of  PS II [3] must represent secon- 
dary phenomena.  

However,  in terms of  the charge separation reac- 
tion shown above, it is still unclear whether pho- 
toinhibition adversely affects the pr imary charge 
separation reaction between P-680 and Pheo (step 
1) or the transfer of  the reducing equivalent f rom 
Pheo-  to QA (step 2). In the present work we 
monitored the pr imary charge separation reaction 
of  PS II by measuring the photoreduction of  Pheo 
in isolated thylakoid membranes  and in intact cells 
o f  Chlamydomonas, following the methodology 
developed by Klimov et al. [8]. Our results show 
that the pr imary charge separation between P-680 
and Pheo is adversely affected during pho- 
toinhibition. 

2. MATERIALS AND M E T H O D S  

Spinach chloroplasts and PS II enriched 
particles (BBY [9]) were isolated [10]. 
Chlamydomonas reinhardtii cells were grown and 
harvested [11]. Photoinhibition treatments of  
chloroplast and Chlamydomonas reinhardtii cell 
suspensions were performed [7]. Light-induced ab- 
sorbance change measurements of  Pheo a were 
taken in an anaerobic cell o f  1 cm pathlength as 
described [8] with a laboratory constructed split 
beam spectrophotometer  [12]. In order to alleviate 
light scattering and sedimentation of  thylakoid 
membranes  in the cuvette, 0.005o70 (v/v) Triton 
X-100 was added to the samples prior to the 
measurement.  The Pheo photoreduction was in- 
duced by blue (Corning CS 4-96) excitation light at 
an intensity of  6 0 0 / z E . m - 2 . s  -1 ( - 1 . 2  × l05 
erg. cm -z .  s-~). The half-bandwidth of the measur- 
ing beam was 1 nm. The absorbance difference 
measurements were corrected for the effect of  par- 

ticle flattening [13]. Whole chain oxygen evolution 
of  the Chlamydomonas reinhardtii cells (H20 

- ,CO2) was assayed at saturating light intensity 
using a Clark type oxygen electrode [11]. 

3. RESULTS AND DISCUSSION 

Fig.l .  shows the wavelength dependence of  the 
light-induced absorbance change obtained with 
resolved membranes of  the grana partition regions 
suspended under reducing conditions (Eh -- 
- 4 9 0  mV). The difference spectrum shows minor 
positive bands at 658 and 675 nm and a major  
negative band at 685 nm. The position of  the peaks 
and the narrow band width of  the 685 nm band 
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Fig.1. Light-induced absorbance difference spectrum of 
thylakoid membranes from the grana partition regions 
(BBY particles) of spinach chloroplasts suspended at a 
redox potential of -490 mV (x). The reaction mixture 
contained 20 mM Tris-HCl (pH 7.8), 35 mM NaC1, 
2 mM MgCl2, 2/zM methylviologen, 2/zM 
indigodisulphonate, 2 mM MnCI2 and 0.0050/0 (v/v) 
Triton X-100. The excitation light intensity was 
600/zE-m-2.s -1 (-1.2 × l05 erg.cm-2.s-l).  Optical 
pathlength of the cuvette was l cm and the Chl 
concentration was 7.8 ,uM. The same spectrum corrected 

for particle flattening (©). 
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Fig.2. Time-course of Pheo photoreduction as indicated 
by the bleaching at 685 nm. The reaction mixture 
contained resolved membranes from the grana partition 
regions (BBY) or unfractionated thylakoid membranes 
(control) of spinach chloroplasts. The actinic light came 
on at about 15 s. Chl (a+b) concentration was 17/~M. 
Differential flattening correction factors at 685 nm were 

1.29 (BBY) and 1.26 (Control). 

identify the difference spectrum as arising f rom the 
photochemical reduction of the Pheo primary elec- 
tron acceptor of  PS II [8]. The same spectrum cor- 
rected for particle flattening [13] is shown in fig. 1, 
dashed line. 

Fig.2 shows typical traces of  the light-induced 
absorbance change at 685 nm (AA685) obtained 
either with resolved membranes f rom the grana 
partition regions (BBY) or with isolated but intact 
thylakoid membranes (control) poised at a redox 
potential of  about - 4 9 0  mV. Being on an equal 
Chl basis, the amplitude of  the signal obtained 
with the membranes of  the grana partition regions 
(BBY) is considerably greater than that o f  the un- 
fractionated thylakoids (control), suggesting Pheo 
enrichment in the BBY particles. The quantitation 
of  Pheo a f rom the AA685 must be based on a dif- 
ferential extinction coefficient, for which publish- 
ed values range f rom 32 to 1 0 0 m M - ~ . c m  -~ 
[14-16]. We estimated the differential extinction 
coefficient of  Pheo a in BBY particles directly by 
using the known Chl/QA = 230:1 in BBY particles 
[10,17] and by assuming a 1 : 1 ratio for Pheo/QA 
photoreduction. An absorbance change ofAA6s5 = 
- 3.72 × 10 -J in BBY particles (fig.2, upper), after 
correction for the effect of  flattening (Cf = 1.29), 
implies an in situ differential extinction coefficient 
of  65 m M -  ~- cm-1, in good agreement with the zae 
of  P-700 and P-680 [18,19]. The in vivo concentra- 
tion of Pheo a in unfractionated spinach 

thylakoids was then estimated from the AA685 = 

- 2 . 2 7  × 10 -3 (fig.2, lower) after correction for 
particle flattening (Cf --- 1.26). A Chl /Pheo = 
386:1 was derived, in good agreement with the 
reported PS II concentration (Chl/QA = 380:1) in 
unfractionated spinach chloroplasts [10]. It is im- 
plied that 1 Pheo molecule per PS II complex can 
be photoreduced upon poising the oxidation- 
reduction potential of  the chloroplast suspension 
medium to a negative ( - 4 9 0  mV) value. 

Having established the conditions for the 
measurement of  Pheo photoreduction in spinach 
chloroplasts, we proceeded with our photoinhibi- 
tion treatment [7]. Fig.3 compares the amplitude 
of the light-induced AA685 in dark-adapted (con- 
trol) and thylakoid membranes subjected to 
60 rain photoinhibition treatment.  It is evident 
that the amount  of  photoreducible Pheo is lowered 
upon photoinhibition. Such a response is reminis- 
cent of  the lowered amount  of  photoreducible QA 
occurring upon photoinhibition [7]. Fig.4 com- 
pares the time course of  the amplitude decrease of  
AA32o (QA photoreduction) and of AA685 (Pheo 
photoreduction) during photoinhibition. It is evi- 
dent that the two phenomena display identical 
kinetics, suggesting that the reduction of Pheo is 
adversely affected and that inhibition in QA 
photoreduction [7] is only a consequence of inhibi- 
tion in the primary charge separation. It is un- 
equivocally concluded that during photoinhibition 
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Fig.3. The effect of photoinhibition on the Pheo 
photoreduction in spinach thylakoid membranes. The 
light-induced absorbance change was measured at 
685 nm at a redox potential of -490 inV. The 
concentration of Chl (a+b) was 17/zM. Control 
thylakoids were kept in the dark and photoinhibited 
thylakoids were incubated for 60 rain at 0°C under 
strong white light (2500/zE.m-Z.s -1) prior to the 
measurement. Note the substantially lower amplitude of 

Pheo photoreduction (AA685) upon photoinhibition. 
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Fig.4. The amplitude of the light-induced absorbance 
change reflecting QA photoreduction (zlA32o, e) and 
Pheo photoreduction (AA685, ©) as a function of 
incubation time under strong actinic illumination 
(photoinhibition). Note the identical QA and Pheo 

dependence on photoinhibition. 

Table 1 

Photoinhibition and recovery parameters 
Chlamydomonas reinhardtii 

in 

Treatment Rate of oxygen AA685 
evolution, % of control 

% of control 

Control 100 100 

60 min 
photoinhibition 63 45 

+ 60 min recovery 120 119 

The light-saturated rate of oxygen evolution (Pmax) of 
the control was 173/zM 02 ./zM Chl(a + b)-1. h-1 and the 

Chl/Pheo ratio was 510 _+ 50 

the pr imary charge separation between P-680 and 
Pheo in PS II of  chloroplast is prevented. 

Our conclusion on the primary site of  pho- 
toinhibition is consistent with the results of  several 
other investigators. Thylakoid membranes with in- 
activated water-splitting enzyme exhibited ac- 
celerated rates of  photoinhibition [20] suggesting a 
pr imary site between Z and QA [21] or Z and P-680 
[22,23]. Additional work with chloroplasts has 
suggested that photoinhibition is not specific to the 
QB-binding site [5,6]. Moreover,  our results ex- 
clude the secondary donor Z as the primary site of  
photoinhibition because under our experimental 
conditions (in the presence of dithionite, Eh = 
-- 490 mV), the measurement of  Pheo does not re- 
quire an electron transfer reaction between Z and 
P-680. However,  conclusions on the primary site 
of  photoinhibition resulting f rom this and other 
work [2,5-7,20-23] is in contrast to the model ad- 
vocating the QB-binding site as the locus of  pho- 
toinhibition [3,24]. 

Measurements of  photoinhibition with the Pheo 
photoreduction assay were extended to include the 
green alga Chlamydomonas reinhardtii. Cells 
grown at a medium light intensity (200/zE- 
m - 2 . s  -1) displayed Chl /Pheo  = 510:1 ratios, 
similar to Chl/QA = 490:1 reported previously 
[11]. Photoinhibit ion was administered by a high- 
light treatment (3000/~E. m -2. s-x) to continuously 
stirred and bubbled (3°7o CO2 in air) cultures at 
25°C. Prior to the Pheo quantitation measure- 
ment,  C. reinhardtii cells were sonicated briefly 
(1 min in pulsed mode) in order to disrupt the cell 

wall and facilitate the equilibration of  the 
thylakoid membrane with the redox mediators at 
the - 490 mV redox potential of  the medium. Pho- 
toinhibited cells manifested a decrease in light 
saturated rates of  O2 evolution (Pmax, measured 
under in vivo conditions) and a similar decrease in 
the light-induced signal of  Pheo photoreduction 
(table 1). Moreover,  recovery of/)max after return- 
ing the cells to normal growth conditions was 
paralleled by recovery of  the Pheo photoreduction 
signal. It is concluded that both photoinhibition 
and the physiological process of  chloroplast 
recovery f rom it involve the function of  the 
pr imary photochemical charge separation between 
P-680 and Pheo in the reaction center of  PS II. 
Hence, our results do not support  the notion of  a 
primary effect of  photoinhibition on the QB- 
herbicide binding site of  the 32 kDa protein [3]. In- 
stead, it appears that photoinhibitory damage oc- 
curs at the photochemical reaction center of  PS II, 
i.e., close to, if not at, P-680. 
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