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Addition of bradykinin to mouse NIE-115 neuroblastoma cells evokes a rapid but transient rise in cytoplas- 
mic free Ca 2+ concentration ([Ca2+]i). The [Ca2+]i rise is accompanied by a transient membrane hyperpolari- 
zation, due to a several-fold increase in K + conductance, followed by a prolonged depolarizing phase. Pre- 
treatment of the cells with a Ca2+-ionophore abolishes the hormone-induced hyperpolarization but leaves 
the depolarizing phase intact. The transient hyperpolarization can be mimicked by iontophoretic injection 
of IP3(1,4,5) or Ca 2+, but not by injection of 1P3(1,3,4), IP~(1,3,4,5) or Mg 2+ into the cells. Instead, IP3(1,3,4) 
evokes a small but significant membrane depolarization in about 50% of the cells tested. Microinjected 
IP4(1,3,4,5) has no detectable effect, nor has treatment of the cells with phorbol esters. These results suggest 
that, while IP3(1,4,5) triggers the release of stored Ca 2+ to hyperpolarize the membrane, IP3(I,3,4 ) may initi- 

ate a membrane depolarization. 

Inositol trisphosphate; Inositol tetrakisphosphate; Ca2+; Membrane potential; Bradykinin 

1. I N T R O D U C T I O N  

The receptor-mediated hydrolysis of  phosphati-  
dylinositol 4,5-bisphosphate (PIPz) yields at least 
two second messengers in stimulated cells: diacyl- 
glycerol, an activator of  protein kinase C [I], and 
inositol 1,4,5-trisphosphate, IP3(1,4,5), which trig- 
gers the release of  Ca 2÷ f rom internal stores [2]. In 
addition to IP3(1,4,5), stimulated cells also 
produce IP3(1,3,4) and IP4(1,3,4,5) via a pathway 
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that involves a specific IP~(l,4,5)-3-kinase and a 
polyphosphate 5-phosphatase [3,4]. Recent evi- 
dence suggests that 1P4(1,3,4,5) is likely to be a 
mediator of  increased Ca z+ influx across the 
plasma membrane  [5], while the physiological role, 
if any, of  IP3(1,3,4) remains to be determined. 

In the present study we have used mouse 
N1E-115 neuroblastoma cells which exhibit pro- 
nounced electrophysiological responses to various 
CaZ+-mobilizing neurohormones.  We show that 
bradykinin elicits a marked biphasic membrane  
potential change. The first phase, a transient 
hyperpolarization is due to IP3-dependent release 
of  stored Ca z+ into the cytoplasm, while the subse- 
quent depolarizing phase can be mimicked, at least 
in part,  by microinjection of  IP3(1,3,4), 
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2. MATERIALS AND M E T H O D S  

NIE-115 cells were grown on circular cover 
glasses and induced to differentiate into mature 
sympathetic neurones with 1.5070 DMSO, as 
described [6,7]. Inositol polyphosphates were 
prepared and purified by H P L C  as in lrvine et al. 
[8]. The inositol phosphates were dissolved in H20  
at final concentrations of  0 .5 -2  mM, and the solu- 
tions poured into fine-tipped micropipettes for 
iontophoretic injections. A second microelectrode 
(3 M KC1 filled, 20-50 MI)) was used to measure 
membrane potential and resistance using conven- 
tional electrophysiological techniques [7,9]. The 
temperature of  the bathing solution was maintain- 
ed at 33 ± I °C by means of  a Peltier element. 

Measurements of  [Ca2÷]i were carried out using 
the fluorescent Ca2+-indicator indo-I (Molecular 
Probes), according to published procedures 
[10,11]. 

3. RESULTS AND DISCUSSION 

3.1. Effects of  bradykinin, IP3, COl 2÷ and 
ionomycin 

Addition of bradykinin (2/zM) to N1E-115 cells 
loaded with the fluorescent Ca2÷-indicator indo-1 
results in an immediate transient rise in [Ca2+]i 
(fig. 1A) even in the presence of  excess E G T A  (not 

shown), indicating the release of Ca 2÷ from inter- 
nal stores. Addition of A23187 or ionomycin 
(1/~M) to the cells evokes a [Ca2+]i  rise that persists 
for at least 10min  (fig.lA), as expected for 
ionophores that tend to equilibrate external and in- 
tracellular Ca 2+ compartments .  

The bradykinin-induced [Ca2÷]i rise is accom- 
panied by an immediate hyperpolarization (lasting 
10-15 s) followed by a depolarizing phase, 
5-10  mV in amplitude, that usually lasts for a few 
minutes (fig.lB). Similar biphasic responses to 
bradykinin have been reported for rat glioma cells 
[12] and for neuroblastoma × glioma NG108-15 
hybrid cells [13]. The initial hyperpolarization in 
response to bradykinin is accompanied by a 
several-fold decrease in membrane resistance 
(fig.lB), consistent with activation of  [Ca2÷]i - 
dependent K + channels [13,14]. During the 
depolarizing phase there is again a decrease in 
membrane resistance (fig. 1B), suggesting the open- 
ing of  a distinct set of  ion channels. As the mem- 
brane potential again reaches its resting level, the 
membrane resistance increases to its original value. 
This biphasic pattern of  membrane potential 
changes was observed in all of  the 90 cells tested. 

Direct evidence for the notion that the initial 
hyperpolarization is mediated by IP3(1,4,5)- 
dependent release of  intracellularly stored Ca z÷, 
comes f rom microinjection experiments (fig.2). 
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Fig. 1. (A) Ca 2+ sinals of indo-1 loaded N 1 E-115 cells in response to bradykinin (BK, 2 ~M) and A23187 (1/~M). Cells 
were incubated with 2/~M indo-1 acetoxymethyl ester for 30 min at 37°C and [CaZ+]i-dependent fluorescence was 
monitored as described [11]. Resting [Ca2+]i of N1E-115 cells is in the 150-200 nM range. Maximal indo-I fluorescence 
corresponds to approx. 1-2/~M Ca 2+. (B) Typical electrophysiological recording of biphasic membrane potential 
change induced by bradykinin (2/~M). Membrane resistance was monitored by the voltage response to brief 
hyperpolarizing current injections (0.25 nA). Resting membrane potentials of N1E-115 cells are in the 35-45 mV range 

(interior negative). 
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Fig.2. Membrane potential and resistance changes in single N I E-115 cells following microinjection of IP3(1,4,5) (A) and 
CaCI2 (B). Injection current, 2.25 nA. Pipette concentrations: IP3(1,4,5), 2 mM; CaCIz, 1 M. Other details as in fig. 1B. 
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Fig.3. Membrane potential and resistance changes in N1E-115 cells following addition of the indicated stimuli. Final 
concentrations: A23187, 1/~M; TPA, 100 ng/ml; bradykinin, 2 gtM. Other details as in fig.lB. 

Iontophoret ic  injection of  IP3(1,4,5) or Ca 2+ into 
single ceils evokes a marked transient hyper- 
polarization without any sign of  a subsequent 
depolarizing phase (fig.2A,B). Microinjection of  
Mg 2+ is without effect (not shown). Also, addition 

of  A23187 or ionomycin close to an impaled cell 
evokes a transient hyperpolarization without a 
second depolarizing phase (fig.3A). When Ca 2÷ 
pools are equilibrated by pretreating the cells with 
ionophore for - 1 0 - 1 5  min the bradykinin- 
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induced hyperpolarization is completely blocked, 
but not the subsequent depolarization (fig.3A). 
From these results we conclude that, while the 
bradykinin-induced hyperpolarization is explained 
by IP3(l,4,5)-triggered release of  stored Ca 2+, the 
depolarizing phase is independent of [CaZ+]i even 
when [Ca2+]i is maintained at very high levels 
( -10/zM) using an ionophore. 

Phorbol esters, such as 12-O-tetradeca- 
noylphorbol-13-acetate (TPA) and phorboldi- 
butyrate (PdBu), which activate protein kinase C, 
produce a weak, depolarizing inward current in 
NGI08-15 cells and thereafter inhibit the brady- 
kinin-induced depolarization [15]. These findings 
led Higashida and Brown [15] to conclude that the 
depolarizing phase of the bradykinin response is 
attributable to kinase C closing specific K + chan- 
nels. In N1E-115 cells, however, phorbol esters 
(TPA or PdBu, 100 ng/ml) fail completely to af- 
fect membrane potential and membrane conduc- 
tance ([16] and results not shown); yet, these 
compounds do activate kinase C in N1E-115 quite 
readily, as judged from their effect on Na+/H ÷ ex- 
change [16]. It is conceivable that kinase C might 
require a prior [Ca2+]i rise to exert an effect on 
membrane potential and conductance. However, 
phorbol esters are still ineffective in cells in which 
[Ca2+]i had already been raised by A23187 
(fig.3B). Furthermore, under our experimental 
conditions the bradykinin-induced biphasic 
voltage response was not detectably affected by 
pretreating the N1E-115 cells with either TPA or 
PdBu (fig.3C). It therefore seems unlikely that the 
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hormone-induced depolarizing phase in N1E-115 
cells results from kinase C activation. 

We also tested the possibility that cyclic 
nucleotides are involved in the initiation of  the 
depolarizing phase. However, application of  either 
8-Br-cAMP or 8-Br-cGMP (1 mM) failed to elicit 
a detectable membrane potential change (not 
shown). 

3.2. Effect of IP3(1,3,4) 
To determine whether inositol polyphosphates 

other than IP3(1,4,5) might contribute to the 
biphasic nature of  the bradykinin response, we 
microinjected pure (prepared by HPLC)  IP3(1,3,4) 
and IP4(1,3,4,5) at equivalent pipette concentra- 
tions. An intriguing effect is seen with IP3(1,3,4) 
(fig.4). After a small, initial hyperpolarization 
there is a distinct depolarizing phase, albeit less 
pronounced than usually seen with bradykinin. As 
with bradykinin, the depolarization is accom- 
panied by a decreased membrane resistance. Such 
a response was observed in 55 of the 111 microin- 
jection attempts. We presume that the IPa(1,3,4)- 
induced hyperpolarization reflects the weak 
CaZ÷-mobilizing activity of  this IP3-isomer [8]. 
More importantly, we suggest that the subsequent 
depolarization is caused, either directly or indirect- 
ly, by the opening of an as yet unidentified ionic 
channel that may be responsible for the 
bradykinin-induced depolarizing phase. 

3.3. Effect of IP4(1,3,4,5) 
Finally, we examined the possible effect of  ion- 
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Fig.4. Typical electrophysiological responses to microinjected IP3(1,3,4) and IP4(1,3,4,5). Pipette concentrations of IP~ 
a n d  I P 4 ,  1-2 mM. Other details as in figs 1B and 2. 
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tophoretically injected IP4(1,3,4,5) in N1E-115 
cells. As illustrated in fig.4B, the microinjection of  
IP4(1,3,4,5) (pipette concentration 0 .5-2 .0  mM) 
failed completely to evoke any detectable effect on 
membrane  potential and resistance (29 microinjec- 
tions in 10 different cells). This result agrees with 
the failure of  IP4(1,3,4,5) to mobilize Ca 2÷ from 
internal stores [8], and it suggests that the local 
IP4(1,3,4,5) concentration is not high enough to 
yield sufficient IP3(1,3,4) (through dephosphoryla-  
tion) to evoke the characteristic IP3(1,3,4) effect 
on membrane potential as in fig.4A. Presumably 
this observation also accounts for the failure of  
InsP3(1,4,5) to induce a depolarizing phase. 

3.4. Conclusions 
In conclusion, our proposed scheme for the ac- 

tion of  bradykinin on N1E-115 cells differs f rom 
that suggested by Higashida and Brown [15] on 
NG108-15 cells, in that IP~(1,3,4) rather than 
kinase C is the pr imary candidate responsible for 
the depolarizing phase. Although the IP3(1,3,4)- 
induced depolarization is smaller and less reliable 
than that evoked by bradykinin, this could simply 
be due to the localized accumulation of  microin- 
jected IP3(1,3,4) as opposed to an overall increase 
in IP3(1,3,4) levels just underneath the plasma 
membrane  in hormonally stimulated cells. 

When this manuscript  was in preparation,  
Higashida and Brown [17] reported that microin- 
jected IP3(1,3,4) and IP4(1,3,4,5) both evoke an in- 
ward (depolarizing) membrane current in 
NG108-15 cells, the nature of  which remains to be 
identified. I f  this current is the same as that we 
observe here, then it seems likely that the effect of  
IP4(1,3,4,5) in NG108-15 cells [17] is due to its 
breakdown product  IP3(1,3,4), because in our 
hands IP4(1,3,4,5), injected at the same concentra- 
tion as IP3(1,3,4), had no effect on N1E-115 cells; 
a difference in IP4 phosphatase levels between the 
two cell lines may be the explanation. However,  
according to Higashida and Brown, this IP3(1,3,4)- 
induced current is not associated with the 
depolarizing phase of  the bradykinin responses 
[15,17], which suggests more profound differences 
in physiology between the cell lines. Clearly, fur- 
ther study is required both to establish the sug- 

gested second messenger role of  IP3(1,3,4) in 
hormone action, and to resolve the discrepancies in 
interpretation of  the nature of  the biphasic 
response to bradykinin. 
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