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The human insulin-like growth factor II gene contains two
development-specific promoters
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The insulin-like growth factors (IGF) play an important role in fetal and postnatal development. Recently,

the nucleotide sequences of the cDNAs encoding IGF-I and IGF-II and part of the human IGF genes were

reported. In this communication we describe two distinct IGF-II cDNAs isolated from a human adult liver

and a human hepatoma ¢cDNA library, respectively. Using these two cDNAs, we have established that the

human IGF-II gene contains at least 7 exons. Two different IGF-11 promoters have been identified, 19 kilo-

bases (kb) apart, which are active in a development-specific manner. The promoter, active in the adult stage,
is located only 1.4 kb downstream from the insulin gene.

Insulin-like growth factor II; Somatomedin; Eukaryotic promoter; Development; (Hurman gene)

1. INTRODUCTION

The somatomedins or insulin-like growth factors
(IGF) play an important role in fetal and postnatal
growth and development [1,2]. Two major human
IGFs have been fully characterized; IGF-1 is a
basic peptide of 70 amino acids, while IGF-II is a
neutral peptide containing 67 residues [3,4]. The
nucleotide sequences of ¢cDNAs encoding IGF-I
and IGF-II and part of the human IGF genes have
been reported [5—14]. The c¢DNA sequences
predict that both IGFs are synthesized as larger
precursor molecules which undergo extensive pro-
cessing.

Here, we describe the characterization of two
distinct IGF-IT ¢cDNAs isolated from a human
adult liver and a human hepatoma ¢cDNA library,
respectively. These ¢cDNAs, differing from each
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other in their 5'-noncoding regions, have been
used to determine the gene structure. We have
identified two different IGF-II promoters, 19 kb
apart, which are active in a development-specific
manner,

2. MATERIALS AND METHODS

2.1. Libraries

A ¢DNA library from the human hepatoma cell
line HepG2 was kindly provided by Drs P. Berg
and M. McPhaul (Stanford, USA). It was con-
structed as described in [15] and has a complexity
of 2 x 10° independent clones. Two non-amplified
human genomic cosmid libraries were constructed
from human placenta DNA and from GM 1416,
48XXXX cell line DNA [11].

2.2. Restriction mapping, nucleotide seguence
analysis and primer extension

The isolated ¢cDNAs and cosmid clones were

characterized by restriction enzyme analysis and

Southern blot hybridization. Using [a-**P]dCTP-
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labeled ¢cDNAs as probes, restriction maps were
constructed. For nucleotide sequence analysis the
procedure of Maxam and Gilbert {16] was used.
Primer extension was performed as in [17].

2.3. DNA probes

The cDNA probes isolated from the plasmid
pIGF-II [8] contain the coding sequences of the
IGF-II precursor, preceded by a 5'-nontranslated
region of 326 bp. Genomic probes were isolated
from the cosmid clones and contain sequences
specific for several exons as indicated in the legend
to fig.3. Double-stranded DNA probes were la-
beled by nick translation with {->*P]JdCTP to a
specific activity of 10® cpm/xg.

2.4. Northern blotting

Poly(A)" RNA was isolated from fetal and adult
liver by the guanidinium thiocyanate/CsCl method
[18] and one round of oligo(dT)-cellulose
chromatography [19]. Glyoxalated RNAs [20]
were size-fractionated on 0.8% agarose gels (10 xg
per lane), transferred onto nylon hybridization
membranes (Hybond N, Amersham, England) and
hybridized to different **P-labeled probes. After
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hybridization the membranes were washed to a
final stringency of 0.1 x SSC, 1% SDS, at 65°C
for 30 min.

3. RESULTS AND DISCUSSION

From an adult human liver cDNA library several
IGF-Il-specific ¢cDNAs have been isolated, but
none contains the 5’-terminus of IGF-II mRNA
[8]. Localization of the cDNA sequences on
cosmid clones showed that the IGF-II gene con-
tains at least two 5'-noncoding exons and three
coding exons [11]. Further analysis revealed that
one of these ¢cDNAs contains sequences derived
from a third 5'-noncoding exon. A schematic
representation of this cDNA and the nucleotide se-
quence of its 5'-terminus are shown in fig.l1A.
These results imply that IGF-II mRNA from adult
liver is transcribed from six exons, viz. three
5’-nontranslated exons (exons 1-3) and three ex-
ons coding for the IGF-II precursor {(exons 5—7).

From the human hepatoma cell line HepG2 we
isolated one IGF-Il-specific clone. Analysis of this
¢DNA revealed that it consists of the three coding
exons (exons 5-7) preceded at the 5'-end by a
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Fig.1. Schematic representation and 5 '-nucleotide sequences of IGF-I1 c¢DNAs isolated from a human adult liver library

(A) and a human hepatoma cell line HepG2 library (B)

. The nucleotide sequences of exons 2—7 have been published

elsewhere [7,8,11]. The regions encoding the mature peptide (B,C.A,D), those coding for the signal peptide (pre) and
the C-terminal peptide (E) as well as 5’- and 3'-nontranslated sequences are indicated.
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nucleotide sequence, diverging from the splice site
onwards, which has not been detected before in
other human ¢DNAs (fig.1B). The sequence is
homologous to a rat liver cell line (BRL3A) cDNA
sequence determined by Dull et al. [7] and identical
to a sequence localized on the human
chromosome. This 5'-noncoding sequence is
designated exon 4.

Employing the two above-mentioned IGF-I1
cDNAs as probes we determined the precise posi-
tions of the IGF-II specific sequences on
chromosomal cosmid clones. The complete map of
the IGF-II gene is shown in fig.2. The human IGF-
II gene contains seven exons and spans 28 kb of
chromosomal DNA. Four 5'-noncoding exons (ex-
ons 1—4) are followed by three exons (exons 5-7)
coding for the IGF-II precursor. The 5’ -noncoding
exons are used in alternative transcripts. Adult
liver mRNA consists of exons 1-3, 5-7, while
HepG2 mRNA contains exons 4—7, suggesting the
presence of two different promoters. A striking
feature of the IGF-II gene is its location close to
the insulin gene, Bell and co-workers [10]
established that the genes for insulin and IGF-II
are contiguous with a maximal distance of 12.6 kb.
Our data further reduce this distance to only
1.4 kb (fig.2).
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Since the two characterized cDNAs contain dif-
ferent 5'-nontranslated sequences, while only a
single IGF-11 gene is present, we established at
which stage in development the two corresponding
mRNAs are expressed. Poly(A)* RNA was
isolated from fetal and adult human liver. Nor-
thern blots of poly(A)* RNA were hybridized with
three different **P-labeled probes. Hybridization
with an IGF-II probe containing exon & to RNA
blots containing 10 xg poly{(A)* RNA from fetal
and adult human liver revealed strong expression
of a 6.0 kb mRNA in fetal liver, while in adult liver
mRNA a weak band of 5.3 kb was detected (fig.3,
lanes 3,4). This indicates that the IGF-II gene is
predominantly expressed in fetal tissue. To
establish the expression of the different
5'-noncoding exons, poly(A)* RNA blots were
hybridized with fragments containing exon 1 and
exon 4 sequences, respectively. The probe contain-
ing exon 1 sequences hybridized to the 5.3 kb band
in adult mRNA and not to the 6.0 kb band in fetal
liver (fig.3, lanes 5,6) indicating that exon 1 se-
quences are only present in adult mRNA and not
in fetal mRNA. On the other hand, the exon 4
probe hybridized only to the 6.0 kb band in fetal
mRNA (fig.3, lanes 1,2), suggesting that this exon
is only expressed in fetal tissue.
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Fig.2. Schematic representation of the insulin and IGF-II gene region. Two partially overlapping cosmid clones were
used to characterize the IGF-II gene structure: cos igf2 contains exons 2—7 of the IGF-II gene [11] and cos ins-igf2,
isolated from the GM 1416 cosmid library, encompasses the seven exons of the IGF-II gene as well as the three exons
of the insulin gene. The positions of the IGF-II exons were determined by restriction enzyme and nucleotide sequence
analysis. The structure and sequence of the insulin gene have been reported previously by Bell et al. [26]. A restriction
map of the IGF-11 and insulin gene region for the restriction enzymes HindIll (H) and EcoRI (E) is shown.
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Fig.3. Northern blots of fetal and adult human liver RNA. Poly(A)™ RNA was isolated from human fetal and adult

liver (10 g per lane). Lanes: 1,2, hybridization with an 852 bp genomic fragment of exon 4 (nucleotides 164—915 in

[71); 3.4, hybridization with an 825 bp genomic fragment containing sequences of exon 6, coding for mature peptide

and the initial sequences of the E-domain; 5,6, hybridization with a 945 bp genomic fragment (nucleotides 503—1447,
fig.4B) containing part of the exon 1 sequence as well as upstream sequences.

To determine the precise positions of initiation
of transcription, primer extension experiments
were performed with poly(A)” RNA from fetal
and adult liver. A primer of 20 nucleotides (com-
plementary to nucleotides 272-291, fig.4A)
hybridized to fetal mRNA, resulting in an elonga-
tion produect of about 100 nucleotides (not shown).
Nucleotide sequence analysis of the primer exten-
sion product revealed that initiation of transcrip-
tion in the fetal stage occurs at position 186
(fig.4A). An analogous experiment with adult
poly(A)* RNA and an exon | primer (complemen-
tary to nucleotides 1469—1488, fig.4B) yielded ex-
tension products of 90—95 nucleotides, suggesting
that initiation of transcription takes place at
nucleotides 1394—1397 (fig.4B). Due to the low
abundance of IGF-Il mRNA in adult liver,
nucleotide sequence analysis of the primer exten-
sion product was not feasible.

The identification of two sites of initiation of
transcription suggests the presence of two indepen-
dent promoters. In order to investigate the struc-
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ture of these promoters we have determined the
genomic nucleotide sequences preceding the two
start sites of transcription. For the fetal promoter,
the region upstream of exon 4 was sequenced
(1-185, fig.4A). In this region a TATA box is
found at positions —25 to — 19 with respect to the
site of initiation of transcription, while a CAAT
box (—82 to —86) and an Spl recognition se-
quence (— 113 to — 104) are also present. These se-
quences are characteristic elements of most
eukaryotic promoters {21].

For characterization of the adult promoter we
have determined the nucleotide sequence of the
1.4 kb intergenic region between the insulin gene
and exon 1 of the IGF-II gene (fig.4B). This region
exhibits a number of remarkable features. Firstly,
the region upstream of exon 1 does nol contain
TATA and CAAT boxes, but an Spl recognition
site (nucleotides 1344—1353) is present. Further, a
GC-rich region of about 80 nucleotides precedes
the putative site of initiation of transcription.
These features have also been established for a
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Fig.4. Nucleotide sequences of human chromosomal DNA containing the fetal and adult IGF-JI promoters. (A)
Genomic nucleotide sequence containing part of exon 4 and its 5'-flanking region. Nucleotides 258-360 were also
determined by Dull et al. [7]. This region contains the IGF-II promoter active in human fetal liver. The TATA sequence
is boxed, while a CAAT-box (~~~) and an Sp1 recognition sequence (==:=) are indicated. The site of transcription
initiation is shown (4). (B) Nucleotide sequence of the intergenic region between the human insulin and IGF-II genes
containing the IGF-II promoter active in human adult liver. Nucleotide 1 is the first nucleotide downstream of the
polyadenylation site of the insulin gene [25]. The site of initiation of transcription determined by primer extension is
indicated (4). The repeated CAGCCC sequence is underlined as well as a 66 bp inverted repetition. An Spl recognition
sequence is shown (:===).

number of sa-called housekeeping genes, which are
expressed at low levels in a variety of tissues [22].
Secondly, the intergenic region contains a number
of direct and inverted repeats. Besides several
CAGCCC repeats there is an almost perfect 66 bp
inverted repeat at positions 521-586 and
1155—1221 (fig.4B). These repeats might be in-
volved in regulation of expression by interaction
with regulatory proteins.

Since the nucleotide sequences upstream of exon
1 do not contain typical eukaryotic promoter

elements we have investigated whether this region
exhibits promoter activity. A 267 bp fragment
(nucleotides 1186—1452) of the intergenic region
was inserted in front of a promoter-defective
neomycin-resistance gene. A mouse hepatoma cell
line [23] was transfected with this eukaryotic ex-
pression plasmid and the transfected cells were
tested for expression of the neomycin-resistance
gene. Preliminary results show that the 267 bp
fragment acts as a strong promoter (not shown).
This confirms the notion that the region upstream
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from exon 1 is involved in expression of the IGF-1I
gene in adult liver. Further analysis of the pro-
moter regions of the IGF-II gene is in progress.
Tissue-specific expression of the IGF-II gene has
been reported previously [24]. The present data in-
dicate that the IGF-1I gene can also be expressed in
a development-dependent way using two different
promoters. Since the number of known genes with
development-specific expression is still very limited
[253], more detailed investigation of the human
IGF-II gene with its remarkable regulation of ex-
pression is imperative. This might lead to the iden-
tification of development-specific transcription
factors and the elucidation of various processes in-
volved in development and differentiation.
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