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The human insulin-like growth factor II gene contains two 
development-specific promoters 
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The insulin-like growth factors (IGF) play an important role in fetal and postnatal development. Recently, 
the nucleotide sequences of the cDNAs encoding IGF-I and IGF-II and part of the human IGF genes were 
reported. In this communication we describe two distinct IGF-II cDNAs isolated from a human adult liver 
and a human hepatoma cDNA library, respectively. Using these two cDNAs, we have established that the 
human IGF-II gene contains at least 7 exons. Two different IGF-II promoters have been identified, 19 kilo- 
bases (kb) apart, which are active in a development-specific manner. The promoter, active in the adult stage, 

is located only 1.4 kb downstream from the insulin gene. 
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1. I N T R O D U C T I O N  

The somatomedins or insulin-like growth factors 
(IGF) play an important  role in fetal and postnatal  
growth and development [1,2]. Two major  human 
IGFs have been fully characterized; IGF-I  is a 
basic peptide of  70 amino acids, while IGF-II  is a 
neutral peptide containing 67 residues [3,4]. The 
nucleotide sequences of  cDNAs encoding IGF-I  
and IGF-II  and part  of  the human IGF genes have 
been reported [5-14]. The cDNA sequences 
predict that both IGFs are synthesized as larger 
precursor molecules which undergo extensive pro- 
cessing. 

Here,  we describe the characterization of two 
distinct IGF-II  cDNAS isolated f rom a human 
adult liver and a human hepatoma cDNA library, 
respectively. These cDNAs, differing f rom each 
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other in their 5 ' -noncoding regions, have been 
used to determine the gene structure. We have 
identified two different IGF-I I  promoters,  19 kb 
apart ,  which are active in a development-specific 
manner.  

2. MATERIALS AND M E T H O D S  

2.1. Libraries 
A cDNA library f rom the human hepatoma cell 

line HepG2 was kindly provided by Drs P. Berg 
and M. McPhaul (Stanford, USA). It was con- 
structed as described in [15] and has a complexity 
of  2 x 106 independent clones. Two non-amplified 
human genomic cosmid libraries were constructed 
f rom human placenta DNA and f rom GM 1416, 
48XXXX cell line DNA [11]. 

2.2. Restriction mapping, nucleotide sequence 
analysis and primer extension 

The isolated cDNAs and cosmid clones were 
characterized by restriction enzyme analysis and 
Southern blot hybridization. Using [ce-32p]dCTP- 
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labeled cDNAs as probes, restriction maps were 
constructed. For nucleotide sequence analysis the 
procedure of  Maxam and Gilbert [16] was used. 
Primer extension was performed as in [17]. 

2.3. DNA probes 
The cDNA probes isolated from the plasmid 

p lGF-I I  [8] contain the coding sequences of  the 
IGF-I I  precursor, preceded by a 5 ' -nontranslated 
region of 526 bp. Genomic probes were isolated 
from the cosmid clones and contain sequences 
specific for several exons as indicated in the legend 
to fig.3. Double-stranded DNA probes were la- 
beled by nick translation with [~-3zP]dCTP to a 
specific activity of  10 s cpm//~g. 

2.4. Northern blotting 
Poly(A) + RNA was isolated f rom fetal and adult 

liver by the guanidinium thiocyanate/CsC1 method 
[18] and one round of  oligo(dT)-cellulose 
chromatography [19]. Glyoxalated RNAs [20] 
were size-fractionated on 0.8% agarose gels (10/~g 
per lane), transferred onto nylon hybridization 
membranes (Hybond N, Amersham,  England) and 
hybridized to different 3zP-labeled probes. After 

hybridization the membranes were washed to a 
final stringency of  0.1 × SSC, 1% SDS, at 65°C 
for 30 rain. 

3. RESULTS AND DISCUSSION 

From an adult human liver cDNA library several 
IGF-II-specific cDNAs have been isolated, but 
none contains the 5 ' - terminus of  IGF-II  mRNA 
[8]. Localization of the cDNA sequences on 
cosmid clones showed that the IGF-II  gene con- 
tains at least two 5 ' -noncoding exons and three 
coding exons [11]. Further analysis revealed that 
one of  these cDNAs contains sequences derived 
f rom a third 5 ' -noncoding exon. A schematic 
representation of  this cDNA and the nucleotide se- 
quence of  its 5 ' - terminus are shown in f ig. lA.  
These results imply that IGF-II  mRNA from adult 
liver is transcribed f rom six exons, viz. three 
5 ' -nontranslated exons (exons 1-3) and three ex- 
ons coding for the IGF-I1 precursor (exons 5-7) .  

From the human hepatoma cell line HepG2 we 
isolated one IGF-II-specific clone. Analysis of  this 
cDNA revealed that it consists of  the three coding 
exons (exons 5-7)  preceded at the 5 ' -end  by a 
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Fig. 1. Schematic representation and 5'-nucleotide sequences of IGF-1I cDNAs isolated from a human adult liver library 
(A) and a human hepatoma cell line HepG2 library (B). The nucleotide sequences of exons 2-7 have been published 
elsewhere [7,8,11]. The regions encoding the mature peptide (B,C,A,D), those coding for the signal peptide (pre) and 

the C-terminal peptide (E) as well as 5 ' -  and 3'-nontranslated sequences are indicated. 
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nucleotide sequence, diverging from the splice site 
onwards, which has not been detected before in 
other human cDNAs (fig.lB). The sequence is 
homologous to a rat liver cell line (BRL3A) cDNA 
sequence determined by Dull et al. [7] and identical 
to a sequence localized on the human 
chromosome. This 5 ' -noncoding sequence is 
designated exon 4. 

Employing the two above-mentioned IGF-II  
cDNAs as probes we determined the precise posi- 
tions of  the IGF-II specific sequences on 
chromosomal cosmid clones. The complete map of  
the IGF-II  gene is shown in fig.2. The human IGF- 
II gene contains seven exons and spans 28 kb of  
chromosomal DNA. Four 5'  -noncoding exons (ex- 
ons 1-4) are followed by three exons (exons 5-7) 
coding for the IGF-II precursor. The 5' -noncoding 
exons are used in alternative transcripts. Adult 
liver mRNA consists of  exons 1-3,  5-7 ,  while 
HepG2 mRNA contains exons 4-7 ,  suggesting the 
presence of two different promoters. A striking 
feature of  the IGF-II gene is its location close to 
the insulin gene. Bell and co-workers [10] 
established that the genes for insulin and IGF-II 
are contiguous with a maximal distance of  12.6 kb. 
Our data further reduce this distance to only 
1.4 kb (fig.2). 

Since the two characterized cDNAs contain dif- 
ferent 5 '-nontranslated sequences, while only a 
single IGF-II  gene is present, we established at 
which stage in development the two corresponding 
mRNAs are expressed. Poly(A) + RNA was 
isolated from fetal and adult human liver. Nor- 
thern blots of  poly(A) + RNA were hybridized with 
three different 32p-labeled probes. Hybridization 
with an IGF-II probe containing exon 6 to RNA 
blots containing 10/zg poly(A) + RNA from fetal 
and adult human liver revealed strong expression 
of  a 6.0 kb mRNA in fetal liver, while in adult liver 
mRNA a weak band of 5.3 kb was detected (fig.3, 
lanes 3,4). This indicates that the IGF-I!  gene is 
predominantly expressed in fetal tissue. To 
establish the expression of the different 
5 ' -noncoding exons, poly(A) + RNA blots were 
hybridized with fragments containing exon 1 and 
exon 4 sequences, respectively. The probe contain- 
ing exon 1 sequences hybridized to the 5.3 kb band 
in adult mRNA and not to the 6.0 kb band in fetal 
liver (fig.3, lanes 5,6) indicating that exon 1 se- 
quences are only present in adult mRNA and not 
in fetal mRNA. On the other hand, the exon 4 
probe hybridized only to the 6.0 kb band in fetal 
mRNA (fig.3, lanes 1,2), suggesting that this exon 
is only expressed in fetal tissue. 
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I I I I 
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Fig.2. Schematic representation of the insulin and IGF-II gene region. Two partially overlapping cosmid clones were 
used to characterize the IGF-1I gene structure: cos igf2 contains exons 2-7 of the IGF-II gene [Ill and cos ins-igf2, 
isolated from the GM1416 cosmid library, encompasses the seven exons of the IGF-II gene as well as the three exons 
of the insulin gene. The positions of the IGF-II exons were determined by restriction enzyme and nucleotide sequence 
analysis. The structure and sequence of the insulin gene have been reported previously by Bell et al. [26]. A restriction 

map of the IGF-II and insulin gene region for the restriction enzymes HindIII  (H) and EcoRI  (E) is shown. 
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Fig.3. Northern blots of fetal and adult human liver RNA. Poly(A) ÷ RNA was isolated from human fetal and adult 
liver (10/zg per lane). Lanes: 1,2, hybridization with an 852 bp genomic fragment of exon 4 (nucleotides 164-915 in 
[7]); 3,4, hybridization with an 825 bp genomic fragment containing sequences of exon 6, coding for mature peptide 
and the initial sequences of the E-domain; 5,6, hybridization with a 945 bp genomic fragment (nucleotides 503-1447, 

fig.4B) containing part of the exon 1 sequence as well as upstream sequences. 

To determine the precise positions of  initiation 
of  transcription, primer extension experiments 
were performed with poly(A) ÷ RNA from fetal 
and adult liver. A primer of  20 nucleotides (com- 
plementary to nucleotides 272-291, fig.4A) 
hybridized to fetal mRNA,  resulting in an elonga- 
tion product of  about 100 nucleotides (not shown). 
Nucleotide sequence analysis of  the primer exten- 
sion product revealed that initiation of  transcrip- 
tion in the fetal stage occurs at position 186 
(fig.4A). An analogous experiment with adult 
poly(A) ÷ RNA and an exon 1 primer (complemen- 
tary to nucleotides 1469-1488, fig.4B) yielded ex- 
tension products of  90-95 nucleotides, suggesting 
that initiation of  transcription takes place at 
nucleotides 1394-1397 (fig.4B). Due to the low 
abundance of  IGF-II  m R N A  in adult liver, 
nucleotide sequence analysis of  the primer exten- 
sion product was not feasible. 

The identification of  two sites of  initiation of  
transcription suggests the presence of  two indepen- 
dent promoters.  In order to investigate the struc- 

ture of  these promoters  we have determined the 
genomic nucleotide sequences preceding the two 
start sites of  transcription. For the fetal promoter ,  
the region upstream of  exon 4 was sequenced 
(1-185, fig.4A). In this region a TATA box is 
found at positions - 2 5  to - 19 with respect to the 
site of  initiation of transcription, while a CAAT 
box ( - 8 2  to - 8 6 )  and an Spl recognition se- 
quence ( -  113 to - 104) are also present. These se- 
quences are characteristic elements of  most 
eukaryotic promoters  [21]. 

For characterization of  the adult promoter  we 
have determined the nucleotide sequence of the 
1.4 kb intergenic region between the insulin gene 
and exon 1 of  the IGF-II  gene (fig.4B). This region 
exhibits a number of  remarkable features. Firstly, 
the region upstream of  exon 1 does not contain 
T A T A  and CAAT boxes, but an Spl recognition 
site (nucleotides 1344-1353) is present. Further, a 
GC-rich region of  about 80 nucleotides precedes 
the putative site of  initiation of  transcription. 
These features have also been established for a 
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635 
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875 
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GTGACCCTAG CTACCCTGTG GCTGGGCCAG TCTGCCTGCC ACCCAGGCCA AACCAATCTG 
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!!75 
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Fig.4. Nucleotide sequences of  human chromosomal DNA containing the fetal and adult IGF-II promoters. (A) 
Genomic nucleotide sequence containing part of exon 4 and its 5'-flanking region. Nucleotides 258-360 were also 
determined by Dull et al. [7]. This region contains the IGF-II promoter active in human fetal liver. The TATA sequence 
is boxed, while a CAAT-box ( - - - )  and an Spl recognition sequence (:--==) are indicated. The site of transcription 
initiation is shown (A). (B) Nucleotide sequence of the intergenic region between the human insulin and IGF-II genes 
containing the IGF-II promoter active in human adult liver. Nucleotide 1 is the first nucleotide downstream of the 
polyadenylation site of  the insulin, gene [25]. The site of initiation of transcription determined by primer extension is 
indicated (A). The repeated CAGCCC sequence is underlined as well as a 66 bp inverted repetition. An Spl recognition 

sequence is shown (--:=:). 

number o f  so-called housekeeping genes, which are 
expressed at low levels in a variety o f  tissues [22]. 
Secondly, the intergenic region contains a number 
o f  direct and inverted repeats. Besides several 
CAGCCC repeats there is an almost perfect 66 bp 
inverted repeat at positions 521-586 and 
1155-1221 (fig.4B). These repeats might be in- 
volved in regulation o f  expression by interaction 
with regulatory proteins. 

Since the nucleotide sequences upstream of  exon 
1 do not contain typical eukaryotic promoter 

elements we have investigated whether this region 
exhibits promoter activity. A 267 bp fragment 
(nucleotides 1186-1452) o f  the intergenic region 
was inserted in front o f  a promoter-defective 
neomycin-resistance gene. A mouse  hepatoma cell 
line [23] was transfected with this eukaryotic ex- 
pression plasmid and the transfected cells were 
tested for expression o f  the neomycin-resistance 
gene. Preliminary results show that the 267 bp 
fragment acts as a strong promoter (not shown). 
This confirms the not ion that the region upstream 
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f rom exon 1 is involved in expression of the IGF-I I  
gene in adult liver. Further analysis of  the pro- 
moter regions of  the IGF-II  gene is in progress. 

Tissue-specific expression of the IGF-II  gene has 
been reported previously [24]. The present data in- 
dicate that the IGF-II  gene can also be expressed in 
a development-dependent way using two different 
promoters.  Since the number of  known genes with 
development-specific expression is still very limited 
[25], more detailed investigation of the human 
IGF-II  gene with its remarkable regulation of  ex- 
pression is imperative. This might lead to the iden- 
tification of development-specific transcription 
factors and the elucidation of  various processes in- 
volved in development and differentiation. 
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