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The heme-regulated protein kinase, which specifically phosphorylates the 38-kDa subunit of initiation factor

elF-2, can utilize adenosine 5'-0-(3-thiotriphosphate) (ATP[yS]) as a substrate. The rate of thiophosphoryl-

ation is 5-6-times slower than that observed with ATP. It is of special interest that thiophosphorylated de-

rivatives of elF-2 are resistant to dephosphorylation catalyzed by elF-2 phosphoprotein phosphatase. The

thiophosphorylated eIF-2 is less effective in promoting protein synthesis in hemin-deficient lysates under

physiological conditions. In addition, ATP[yS] could also be utilized by the self-phosphorylation activity
intrinsically associated with HRI.
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1. INTRODUCTION

Protein synthesis in rabbit reticulocytes and
their lysates is regulated by heme (reviews in
[1-3]). In heme deficiency a heme-regulated
translational inhibitor (HRI) is activated that
blocks protein chain initiation. The second in-
hibitor present in reticulocytes is activated by low
concentrations of double-stranded RNA [4]. The
HRI and double-stranded RNA activated in-
hibitors have been identified as adenosine
3':5’-cyclic monophosphate-independent protein
kinases (elF-2 protein kinases), which specifically
phosphorylate the same site on the 38-kDa subunit
(a-subunit) of initiation factor elF-2 [5—14]. As a
consequence, catalytic reutilization of eIF-2 is in-
hibited [15—24]. The elF-2 promotes formation of
the ternary complex (eIF-2-GTP-Met-tRNAy)
with GTP and initiator tRNA, Met-tRNA;. This is
the first rate-limiting reaction in the protein syn-
thesis initiation cycle.

The elIF-2 phosphorylation by HRI can be
detected readily in vitro in a purified system
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[5-7,25]. The dephosphorylation reaction in situ
in lysates, however, restricts reaction conditions to
short-term incubations [26]. There are major dif-
ficulties in analyzing reactions in complex systems
because of the near impossibility of dissociating
the two competing events, namely phosphorylation
and dephosphorylation under physiological condi-
tions. Cyclic AMP-dependent protein kinases that
phosphorylate a wide variety of substrates have
been shown to utilize adenosine 5'-[thio]-
triphosphate (ATP-[4S] or ATP[S]) in phos-
phorylation reactions [27,28]. Thiophosphorylated
proteins in these systems have been shown to be
metabolically stable [27,28]. Unlike cyclic AMP-
dependent protein kinases, which phosphorylate a
wide spectrum of substrates, HRI catalyzed phos-
phorylation is highly specific and is restricted to
elF-2 [5—-8]. Considerations of these facts led me
to investigate whether ATP[y-S] can be used as a
substrate by HRI. Here I report that ATP[yS] is an
effective substrate for the HRI catalyzed thiophos-
phorylation of eIF-2 and that this thio derivative
of eIF-2 is resistant to dephosphorylation cata-
lyzed by elF-2 phosphoprotein phosphatase.
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2. EXPERIMENTAL

The following procedures have been described:
preparation of rabbit reticulocyte lysates, protein
synthesis reacticin mixtures, assay of protein syn-
thesis, preparation of purified HRI, SDS-poly-
acrylamide gel electrophoresis, autoradiography of
polyacrylamide gel, and preparation of purified
elF-2 [25].

2.1. Thiophosphorylation assay

Phosphorylation was carried out in a reaction
mixture (10 1) containing 20 mM Tris-HCI (pH
7.6), 60 mM KCI, 10 mM magnesium acetate,
1 mM DTT, elF-2 (0.5—1 xg), HRI (0.01-0.05 xg)
and 0.2mM  [y-*’S]JATP[S] (spec. act.
9000 cpm/pmol) or [y->*PJATP (spec. act.
4000 cpm/pmol). After incubation at 30°C, the
reaction was terminated by the addition of
denaturing solution (50 mM Tris-HCI, pH 7.8; 1%
SDS, 5% @B-mercaptoethanol) and heated at 100°C
for several minutes. Samples were applied to an
SDS-polyacrylamide gel (10%) and electropho-
resed at 100 V for 4.5 h. The proteins in the gel
were stained with Coomassie brilliant blue. The gel
containing *°S-labelled polypeptides was soaked in
a solution of Fluoro-Hance (Research Products,
International Corp.) enhancer for 30 min. The gel
was then dried and autoradiographed.

2.2. Dephosphorylation of elF-2

In situ dephosphorylation was carried out in
lysates under conditions of protein synthesis
[25,26]. Aliquots (38 «l) of lysate protein synthesis
mixture were incubated at 30°C with either
[**PleIF-2 or [**S]eIF-2. At intervals, aliquots
(6 1) were removed and subjected to SDS-
polyacrylamide gel electrophoresis to separate the
polypeptides. The remaining details of treatment
of the gel for autoradiography are described in sec-
tion 2.1.

2.3. Materials

Adenosine 5'-O-(3-thiotriphosphate) (ATP[S])
was obtained from Boehringer Mannheim (In-
dianapolis, IN); [y-**S]ATP[S] (spec. act.
61 Ci/mmol) and [y-**P]JATP (spec. act.
2000 Ci/mmol) were from New England Nuclear
(Boston, MA). The sources of other materials have
been described [25].
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3. RESULTS AND DISCUSSION

3.1. Thiophosphorylation of elF-2

Incubation of eIF-2 with [y-3*S]JATP[S] and
HRI resulted in thiophosphorylation of the 38-kDa
subunit of eIF-2 (fig.1, lane 3). In addition, self-
thiophosphorylation of HRI was observed (fig.1,
lane 1) and the minute amount of casein protein
kinase [30], present in the eIF-2 preparation,
thiophosphorylated the 50-kDa subunit of eIF-2 as

- {8
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Fig.1. Thiophosphorylation of eIF-2. The reaction
mixture (10 1) containing 20 mM Tris-HCl (pH 7.6),
60 mM KCIl, 10 mM magnesium acetate, ] mM DTT,
0.2 mM [y-**S]ATPIS] (9000 cpm/pmol), 0.5 xg elF-2
and 0.05 g HRI, was incubated at 30°C for 40 min,
The reaction was terminated by the addition of
denaturing solution (50 mM Tris-HCI, pH 7.8; 1% SDS,
5% Z-mercaptoethanol). Samples were heated at 100°C
and then subjected to electrophoresis in a 10%
polyacrylamide gel. Protein in the gel was stained and
then autoradiographed, after being soaked for 30 min in
enhancing solution. Lanes: 1, HRI; 2, elF-2; 3, eIF-2
and HRI. Positions of 38-kDa, 50-kDa and HRI
(80-kDa) bands are indicated.
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well. These findings suggest that not only ATP[4S]
acts as a substrate for thiophosphorylation of the
38-kDa subunit of eIF-2, but that it could be uti-
lized as a substrate by the self-phosphorylation ac-
tivity associated with HRI [29] and by casein
protein kinase [30]. A

The kinetics of  phosphorylation and
thiophosphorylation reactions are shown in
fig.2A,B. In the presence of [y-**S]JATP[S], incor-
poration of 3°S increased progressively over a
period of 160 min with a half-maximum of
90 min. In contrast, incorporation of **P from
[v->*P]ATP leveled off rapidly after 40 min with a
half-maximum of 16 min (fig.3). With ATP[+S], a
lag period of about 8—10 min is observed before
significant incorporation of **S takes place. The

A
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data suggest that the initial rate of the
thiophosphorylation reaction is 5—6-times slower
than that observed with ATP, but the extent of the
reaction is nearly the same. The K, of HRI for
ATP[S] is 4-times higher (12.5 M) than for ATP
(not shown).

3.2. Susceptibility of thiophosphorylated and
phosphorylated elF-2 to elF-2 phospho-
protein phosphatase

The results in fig.4 show that when
phosphorylated elF-2 is added to lysates under
conditions of protein synthesis, eIF-2 is
dephosphorylated rapidly (fig.4A). In contrast,
thiophosphorylated elF-2 is completely resistant to

11
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Fig.2. Kinetics of phosphorylation and thiophosphorylation. The reaction mixture (32 xl) was prepared similarly to that
described in fig.1 with the addition of 0.2mM [y-**SJATP[S] (9000 cpm/pmol) or 0.2mM [y-?PJATP
(5000 cpm/pmol), 8 xg elF-2 and 0.25 xg HRI. Samples were incubated at 30°C, at intervals aliquots (4 xl) were
removed, and phosphorylation and thiophosphorylation of eIF-2 were assayed as described in fig.1. (A) Lanes 1-7,
samples incubated with [y-**PJATP for 0.5, 1, 5, 10, 20, 40 and 80 min; (B) lanes 1-7, samples incubated with
[y-*SIATP[S] for 5, 10, 20, 40, 80, 120 and 160 min. The autoradiogram of **P-labelled samples is underexposed
deliberately; otherwise the bands for samples 3—7 appear as dark black bands. Significant incorporation of *?P takes
place in 0.5 and 1 min of incubation. Data are presented in fig.3.
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Fig.3. Rate of phosphorylation and thiophosphorylation

of elF-2. Data are derived from fig.2. The 38-kDa

polypeptides were cut out from the gel and the
associated radioactivity was measured.
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dephosphorylation under otherwise identical con-
ditions (fig.4B).

The metabolic stability of thiophosphorylated
derivative of elF-2 provides a useful tool to study
the effect of eIF-2 phosphorylation under
physiological conditions. Therefore, the activity of
thiophosphorylated eIF-2 on protein synthesis in
hemin-deficient lysates under physiological condi-
tions was examined. Consistent with earlier data
{2], the control and phosphorylated elF-2 showed
little difference in promoting protein synthesis
(table 1). The thiophosphorylated eIF-2 was,
however, much less effective in maintaining pro-
tein synthesis (table 1).

We have observed that the heme-regulated pro-
tein kinase, which specifically phosphorylates the

Fig.4. Dephosphorylation of phosphorylated and thiophosphorylated eIF-2. Protein synthesis lysate reaction mixtures

(38 xl) were prepared and incubated with *2P- or **S-labelled eIF-2 at 30°C. At intervals, aliquots (6 xl) were removed,

denatured and subjected to electrophoresis in SDS-polyacrylamide gel (10%). The gels were then autoradiographed. (A)

Lanes 1-6, sample of [*2P]eIF-2 incubated for 0, 1, 5, 10, 20 and 30 min; (B) lanes 1-6, samples of [**S]elF-2 incubated
for 0, 1, 5, 10, 20 and 30 min.
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Table 1

Effect of thiophosphorylation on the activity of elF-2 in
hemin-deficient lysates

Sample Protein synthesis
(cpm)
Minus hemin lysate 5780
Minus hemin lysate + elF-2 14711
Minus hemin lysate + [P]elF-2 14302
Minus hemin lysate + [S]elF-2 8509

elF-2 (10 xg) was phosphorylated or thiophosphorylated

as described in the legend to fig.2 for 4 h. Lysate protein

synthesis reaction mixtures without hemin (40 xl) were

incubated without or with 1 £g eIF-2 or phosphorylated

elF-2 or thiophosphorylated elF-2 at 30°C for 40 min.

Aliquots (5 xl) were removed and assayed for protein
synthesis [25]

38-kDa subunit of eIF-2, is also capable of
transferring the <-thiophosphoryl group from
ATP[yS] to its substrate. However, the rate of the
reaction is substantially slower. This finding sug-
gests that affinity of the enzyme for ATP[4S] is
much lower than for ATP; this is consistent with
K. measurements. The thiophosphate derivatives
of eIF-2 are completely resistant to dephosphoryla-
tion catalyzed by eIF-2 phosphoprotein
phosphatase in situ under conditions which
dephosphorylate phosphorylated eIF-2 complete-
ly. This stability of thiophosphorylated eIF-2
derivatives is also supported by the limited promo-
tion of protein synthesis in heme-deficient lysates
by thiophosphorylated elF-2.

In addition, unexpectedly we observed that
heme-regulated protein kinase can also utilize
ATP[4S] for self-phosphorylation and that the ca-
sein protein kinase [30], often found as a contami-
nant in eIF-2 preparations, can transfer the
thiophosphoryl group from ATP[yS] to the
50-kDa subunit of eIF-2. The physiological
significance, if any, of this latter phosphorylation
is not known.
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