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The heme-regulated protein kinase, which specifically phosphorylates the 38-kDa subunit of initiation factor 
eIF-2. can utilize adenosine S-0-(3-thiotriphosphate) (ATP[yS]) as a substrate. The rate of thiophosphoryl- 
ation is 5-6-times slower than that observed with ATP. It is of special interest that thiophosphorylated de- 
rivatives of eIF-2 are resistant to dephosphorylation catalyzed by eIF-2 phosphoprotein phosphatase. The 
thiophosphorylated eIF-2 is less effective in promoting protein synthesis in hemin-deficient lysates under 
physiological conditions. In addition, ATP[yS] could also be utilized by the self-phosphorylation activity 

intrinsically associated with HRI. 
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1. INTRODUCTION 

Protein synthesis in rabbit reticulocytes and 
their lysates is regulated by heme (reviews in 
[l-3]). In heme deficiency a heme-regulated 
translational inhibitor (HRI) is activated that 
blocks protein chain initiation. The second in- 
hibitor present in reticulocytes is activated by low 
concentrations of double-stranded RNA [4]. The 
HRI and double-stranded RNA activated in- 
hibitors have been identified as adenosine 
3 ’ 5 ’ -cyclic monophosphate-independent protein 
kinases (eIF-2 protein kinases), which specifically 
phosphorylate the same site on the 3%kDa subunit 
(a-subunit) of initiation factor eIF-2 [5-141. As a 
consequence, catalytic reutilization of eIF-2 is in- 
hibited [15-241. The eIF-2 promotes formation of 
the ternary complex (eIF-2. GTP . Met-tRNAr) 
with GTP and initiator tRNA, Met-tRNAr. This is 
the first rate-limiting reaction in the protein syn- 
thesis initiation cycle. 

The eIF-2 phosphorylation by HRI can be 
detected readily in vitro in a purified system 

[5-7,251. The dephosphorylation reaction in situ 
in lysates, however, restricts reaction conditions to 
short-term incubations [26]. There are major dif- 
ficulties in analyzing reactions in complex systems 
because of the near impossibility of dissociating 
the two competing events, namely phosphorylation 
and dephosphorylation under physiological condi- 
tions. Cyclic AMP-dependent protein kinases that 
phosphorylate a wide variety of substrates have 
been shown to utilize adenosine 5 ’ -[thio]- 
triphosphate (ATP-[yS] or ATP[S]) in phos- 
phorylation reactions [27,28]. Thiophosphorylated 
proteins in these systems have been shown to be 
metabolically stable [27,28]. Unlike cyclic AMP- 
dependent protein kinases, which phosphorylate a 
wide spectrum of substrates, HRI catalyzed phos- 
phorylation is highly specific and is restricted to 
eIF-2 [5-81. Considerations of these facts led me 
to investigate whether ATP[y-S] can be used as a 
substrate by HRI. Here I report that ATP[yS] is an 
effective substrate for the HRI catalyzed thiophos- 
phorylation of eIF-2 and that this thio derivative 
of eIF-2 is resistant to dephosphorylation cata- 
lyzed by eIF-2 phosphoprotein phosphatase. 
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2. EXPERIMENTAL 3. RESULTS AND DISCUSSION 

The following procedures have been described: 
preparation of rabbit reticulocyte lysates, protein 
synthesis reaction mixtures, assay of protein syn- 
thesis, preparation of purified HRI, SDS-poly- 
acrylamide gel electrophoresis, autoradiography of 
polyacrylamide gel, and preparation of purified 
eIF-2 [25]. 

3.1. Thiophosphorylation of eIF-2 
Incubation of eIF-2 with [Y-~~S]ATP[S] and 

HRI resulted in thiophosphorylation of the 3%kDa 
subunit of eIF-2 (fig.1, lane 3). In addition, self- 
thiophosphorylation of HRI was observed (fig. 1, 
lane 1) and the minute amount of casein protein 
kinase [30], present in the eIF-2 preparation, 
thiophosphorylated the 50-kDa subunit of eIF-2 as 

2.1. Thiophosphorylation assay 
Phosphorylation was carried out in a reaction 

mixture (10 ~1) containing 20 mM Tris-HCl (pH 
7.6), 60 mM KCl, 10 mM magnesium acetate, 
1 mM DTT, eIF-2 (0.5-l pg), HRI (0.01-0.05 pg) 
and 0.2 mM [r-32S]ATP[S] (spec. act. 
9000 cpm/pmol) or [Y-~~P]ATP (spec. act. 
4000 cpm/pmol). After incubation at 30°C the 
reaction was terminated by the addition of 
denaturing solution (50 mM Tris-HCl, pH 7.8; 1% 
SDS, 5% P-mercaptoethanol) and heated at 100°C 
for several minutes. Samples were applied to an 
SDS-polyacrylamide gel (10%) and electropho- 
resed at 100 V for 4.5 h. The proteins in the gel 
were stained with Coomassie brilliant blue. The gel 
containing 35S-labelled polypeptides was soaked in 
a solution of Fluoro-Hance (Research Products, 
International Corp.) enhancer for 30 min. The gel 
was then dried and autoradiographed. 
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2.2. Dephosphorylation of eIF-2 
In situ dephosphorylation was carried out in 

lysates under conditions of protein synthesis 
[25,26]. Aliquots (38 ~1) of lysate protein synthesis 
mixture were incubated at 30°C with either 
[32P]eIF-2 or [35S]eIF-2. At intervals, aliquots 
(6~1) were removed and subjected to SDS- 
polyacrylamide gel electrophoresis to separate the 
polypeptides. The remaining details of treatment 
of the gel for autoradiography are described in sec- 
tion 2.1. 
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2.3. Materials 
Adenosine 5 ’ -0-(3-thiotriphosphate) (ATP[+]) 

was obtained from Boehringer Mannheim (In- 
dianapolis, IN); [r-32S]ATP[S] (spec. act. 
61 Ci/mmol) and [T-~~P]ATP (spec. act. 
2000 Ci/mmol) were from New England Nuclear 
(Boston, MA). The sources of other materials have 
been described [25]. 

Fig. 1. Thiophosphorylation of eIF-2. The reaction 
mixture (10~1) containing 20 mM Tris-HCl (pH 7.6), 
60 mM KCl, 10 mM magnesium acetate, 1 mM DTT, 
0.2 mM [r-35S]ATP[S] (9000 cpm/pmol), 0.5 gg eIF-2 
and 0.05 pg HRI, was incubated at 30°C for 40 min. 
The reaction was terminated by the addition of 
denaturing solution (50 mM Tris-HCl, pH 7.8; 1% SDS, 
5% &mercaptoethanol). Samples were heated at 100°C 
and then subjected to electrophoresis in a 10% 
polyacrylamide gel. Protein in the gel was stained and 
then autoradiographed, after being soaked for 30 min in 
enhancing solution. Lanes: 1, HRI; 2, eIF-2; 3, eIF-2 
and HRI. Positions of 38-kDa, 50-kDa and HRI 

(80-kDa) bands are indicated. 
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well. These findings suggest that not only ATP[yS] data suggest that the initial rate of the 
acts as a substrate for thiophosphorylation of the thiophosphorylation reaction is 5-6-times slower 
38-kDa subunit of eIF-2, but that it could be uti- than that observed with ATP, but the extent of the 
lized as a substrate by the self-phosphorylation ac- reaction is nearly the same. The K,,, of HRI for 
tivity associated with HRI [29] and by casein 
protein kinase [30]. 

ATP[yS] is 4-times higher (12.5 ,LLM) than for ATP 
(not shown). 

The kinetics of phosphorylation and 
thiophosphorylation reactions are shown in 
fig.2A,B. In the presence of [r-35S]ATP[S], incor- 
poration of 35S increased progressively over a 
period of 160 min with a half-maximum of 
90 min. In contrast, incorporation of 32P from 
[y-32P]ATP leveled off rapidly after 40 min with a 
half-maximum of 16 min (fig.3). With ATP[yS], a 
lag period of about 8-10 min is observed before 
significant incorporation of 35S takes place. The 

3.2. Susceptibility of thiophosphorylated and 
phosphorylated eIF-2 to eIF-2 phospho- 
protein phosphatase 

The results in fig.4 show that when 
phosphorylated eIF-2 is added to lysates under 
conditions of protein synthesis, eIF-2 is 
dephosphorylated rapidly (fig.4A). In contrast, 
thiophosphorylated eIF-2 is completely resistant to 

A 
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Fig.2. Kinetics of phosphorylation and thiophosphorylation. The reaction mixture (32 ~1) was prepared similarly to that 
described in fig.1 with the addition of 0.2 mM [r-35S]ATP[S] (9000 cpm/pmol) or 0.2 mM [T-~~P]ATP 
(5000 cpm/pmol), 8 pg eIF-2 and 0.25 pg HRI. Samples were incubated at 3O”C, at intervals aliquots (4 ~1) were 
removed, and phosphorylation and thiophosphorylation of eIF-2 were assayed as described in fig.1. (A) Lanes 1-7, 
samples incubated with [y-32P]ATP for 0.5, 1, 5, 10, 20, 40 and 80 min; (B) lanes 
[r-35S]ATP[S] for 5, 10, 20, 40, 80, 120 and 160 min. The autoradiogram of 32 

1-7, samples incubated with 
P-labelled samples is underexposed 

deliberately; otherwise the bands for samples 3-7 appear as dark black bands. Significant incorporation of “P takes 
place in 0.5 and 1 min of incubation. Data are presented in fig.3. 
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Fig.3. Rate of phosphorylation and thiophosphorylation 
of eIF-2. Data are derived from fig.2. The 38-kDa 
polypeptides were cut out from the gel and the 

associated radioactivity was measured. 

dephosphorylation under otherwise identical con- 
ditions (fig.4B). 

The metabolic stability of thiophosphorylated 
derivative of eIF-2 provides a useful tool to study 
the effect of eIF-2 phosphorylation under 
physiological conditions. Therefore, the activity of 
thiophosphorylated eIF-2 on protein synthesis in 
hemin-deficient lysates under physiological condi- 
tions was examined. Consistent with earlier data 
[2], the control and phosphorylated eIF-2 showed 
little difference in promoting protein synthesis 
(table 1). The thiophosphorylated eIF-2 was, 
however, much less effective in maintaining pro- 
tein synthesis (table 1). 

We have observed that the heme-regulated pro- 
tein kinase, which specifically phosphorylates the 
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Fig.4. Dephosphorylation of phosphorylated and thiophosphorylated eIF-2. Protein synthesis lysate reaction mixtures 
(38 ~1) were prepared and incubated with 32P- or 35S-labelled eIF-2 at 30°C. At intervals, aliquots (6 ~1) were removed, 
denatured and subjected to electrophoresis in SDS-polyacrylamide gel (10%). The gels were then autoradiographed. (A) 
Lanes l-6, sample of [3ZP]eIF-2 incubated for 0, I, 5, lo,20 and 30 min; (B) lanes I-6, samples of [35S]eIF-2 incubated 

for 0, 1, 5, 10, 20 and 30 min. 
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Table 1 REFERENCES 

Effect of thiophosphorylation on the activity of eIF-2 in VI 
hemin-deficient lysates 

Sample Protein synthesis 
(cpm) 

Minus hemin lysate 5780 
Minus hemin lysate + eIF-2 14711 
Minus hemin lysate + [P]eIF-2 14302 
Minus hemin lysate + [S]eIF-2 8509 

eIF-2 (10 pg) was phosphorylated or thiophosphorylated 
as described in the legend to fig.2 for 4 h. Lysate protein 
synthesis reaction mixtures without hemin (40~1) were 
incubated without or with 1 yg eIF-2 or phosphorylated 
eIF-2 or thiophosphorylated eIF-2 at 30°C for 40 min. 
Aliquots (5 ~1) were removed and assayed for protein 

PI 
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synthesis [25] 

3%kDa subunit of eIF-2, is also capable of 
transferring the y-thiophosphoryl group from 
ATP[yS] to its substrate. However, the rate of the 
reaction is substantially slower. This finding sug- 
gests that affinity of the enzyme for ATP[yS] is 
much lower than for ATP; this is consistent with 
K, measurements. The thiophosphate derivatives 
of eIF-2 are completely resistant to dephosphoryla- 
tion catalyzed by eIF-2 phosphoprotein 
phosphatase in situ under conditions which 
dephosphorylate phosphorylated eIF-2 complete- 
ly. This stability of thiophosphorylated eIF-2 
derivatives is also supported by the limited promo- 
tion of protein synthesis in heme-deficient lysates 
by thiophosphorylated eIF-2. 
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In addition, unexpectedly we observed that 
heme-regulated protein kinase can also utilize 
ATP[yS] for self-phosphorylation and that the ca- 
sein protein kinase [30], often found as a contami- 
nant in eIF-2 preparations, can transfer the 
thiophosphoryl group from ATP[yS] to the 
50-kDa subunit of eIF-2. The physiological 
significance, if any, of this latter phosphorylation 
is not known. 
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