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Phosphorylation of p36 in vitro with pp60SrC 

Regulation by Ca2+ and phospholipid 
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P36 is a major substrate of the tyrosine protein kinases. P36 isolated from bovine intestine was used in phos- 
phorylation reactions with pp6W. Phosphorylation was stimulated 3-5-fold by Ca*+, however the K,,, was 
the same (2.5 PM) at high or low Caz+. Although the level of free Ca2+ needed for this enhanced phosphory- 
lation was 10-4-10-3 M, phosphatidylserine shifted the Caz+ sensitivity to the 1O-6-1O-5 M range. Indepen- 
dent evidence suggested that p36 interacts directly with liposomes containing phosphatidylserine. This raises 

the possibility that ~36, like c-kinase, is a Ca 2+-activated, phospholipid-dependent protein. 

Cytoskeleton Actin Tyrosine kinase Growth factor 

1. INTRODUCTION 

One of the major substrates of the tyrosine pro- 
tein kinases is a protein termed p36 [ 1,2]. Cell frac- 
tionation studies and immunofluorescence 
microscopy have demonstrated that p36 is 
associated with the plasma membrane [3-71. P36 is 
a normal cellular protein present in a variety of 
tissues and is especially abundant in intestine 
[&lo], from which it has been isolated [lo]. P36 
has been shown to exist as a monomer or as a com- 
plex with a 10 kDa subunit in both p36 isolated 
from chick fibroblasts [l l] and porcine intestine 
[ 10,121. Although intestinal p36 has been shown to 
bind to spectrin and actin [lo], this interaction re- 
quires millimolar Ca2+ , levels which are orders of 
magnitude higher than other Ca’+-binding pro- 
teins [12]. Here, it was found that Ca*+ enhances 
the phosphorylation of p36 without a change in the 
K,,, of the reaction. Phosphatidylserine (PS) was 
found to shift the Ca*+ requirement from high 
Ca*+ (10-4-10-3 M) to low Ca*+ (10-6-10-5 M). 

2. MATERIALS AND METHODS 

P36 was isolated by a modification of the 

method in [lo]. Phosphorylation was carried out 
using pp60”’ immunoprecipitated from RSV- 
infected CEF cells with anti-C-terminal peptide 
rabbit antiserum (a gift from Gernot Walter [13]). 
The phosphorylation assays were performed in a 
final volume of 204 with 10 mM Tris, 0.05 M 
KCl, 5 mM MgC12, 0.5 mM DTT, pH 7.1, con- 
taining lo-20 ,uM unlabeled ATP and 10-20,&i 
t3*P]ATP (Amersham) with 1 mM EGTA and the 
specified Ca*+ as described [ 121. Phospholipid 
vesicles, prepared by sonication, were included at 
100 pg phospholipid/ml, and the reaction was in- 
itiated by the addition of staph A-containing 
pp60”“. After incubation the reaction was stopped 
by the addition of SDS sample buffer and sub- 
jected to SDS-PAGE. Gels were stained with 
Coomassie blue and the p36 bands were excised 
and Cerenkov counted for radioactivity. For pep- 
tide maps, p36 was labeled on tyrosine with Na1251 
using insolubilized glucose oxidase/lactoperox- 
idase (Enzymobeads, BioRad) or 32P labeled on 
tyrosine with pp60”” as described above. Samples 
were run on a 15% gel, Coomassie blue stained 
and the band of p36 was excised and dried. The gel 
bands were rehydrated in 50 kg chymotrypsin/ml 
of 25 mM ammonium bicarbonate, incubated 
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overnight at 37”C, and the soluble peptides were 

subjected to electrophoresis and chromatography 

[141. 

3. RESULTS 

The phosphorylation of p36 was stimulated 

lO( 

Fig.1. Effect of the free calcium level on the 
phosphorylation of ~36. P36, in the absence of 
phospholipid (A) or in the presence of PC ( n ) or PS ( q ), 
was phosphorylated with pp60”” in a buffer at the 
specified free Ca*+. Values are expressed in terms of 
percent of maximum level of 32P incorporated into ~36. 

1251 

.C. 

. 0 . 
. 

. 

yrk . % 

. ‘. 

. 

. . ,a ., 

*-r 

T 

200 400 600 800 1000 

P36 conc.l$l IllI 

Fig.2. Effect of substrate (~36) concentration on the 
enzyme (pp60src) activity. Increasing amounts of p36 
were phosphorylated with immunoprecipitated pp60”” 
as described in the legend to fig.1 in 1 mM (final) CaClz 
( n ) or 5 mM EGTA (A). Inset: double-reciprocal plot of 
l/rate of phosphorylation vs l/molar p36 level. The rate 
is expressed in cpm x 10m3 incorporated per 20 min 
reaction (absolute rates could not be estimated since the 
pp60”’ level was not known) and the units of the x-axis 
are x lo5 M-l, assuming an M, of the p36-pl0 complex 

of 85000 [lo]. 
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Fig.3. Resolution of tyrosine-containing peptides derived from ~36. P36 was iodinated on tyrosine (A) using 
insolubilized lactoperoxidase/glucose oxidase and glucose or phosphorylated with immunoprecipitated pp60src (B) in 
buffer containing 1 mM CaClz. Chymotryptic peptides were resolved by electrophoresis (left to right) and 
chromatography (bottom to top). Inset in B is the phosphoamino acid analysis of p36 labeled as the complex in high 

calcium. The positions of phosphoamino acid standards serine (s), threonine (t) and tyrosine (y) are shown. 
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some 3-5-fold at high Ca2+ (fig.1). In the absence 
of phospholipid the level of Ca2+ needed for this 
activation was between 10e4 and 10m3 M (fig.l), 
paralleling that needed for actin binding (see, e.g., 
fig.8 in [12]). Phosphatidylcholine (PC), PS, 
phosphatidylinositol (PI) and phosphatidyleth- 
anolamine (PE) were then tested for their ability to 
alter the Ca2+ sensitivity of phosphorylation. 
Whereas PE (not shown) and PC (fig.1) had little 
effect on phosphorylation, PS (fig.1) and PI (not 
shown) shifted the curve some l-2 orders of 
magnitude such that a 3-4-fold increase in 
phosphorylation was observed between 10m6 and 5 
x 10e5 M free Ca2+. 

Peptide maps suggest that p36 is phosphorylated 
by pp60src at a single site both at high Ca2+ (fig.3) 
or low Ca2+ (not shown) and only phosphotyrosine 
was detected (fig.3). P36 phosphorylation ex- 
hibited typical saturation by substrate (fig.2) ap- 
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Fig.4. Co-sedimentation of p36 with PS-containing 
liposomes. Liposomes of PC (A) or PS (B,C) were 
prepared by sonication and mixed with p36 (100 mg/ml) 
in 10 mM Tris, 50 mM MgC12, 1 mM DTT and either 
1 mM EGTA (B) or 1 mM EGTA plus 0.87 mM Ca (5 x 
10e5 M free Ca*+) (A,C). After incubation for 1 h, 
samples were centrifuged (100000 x g, 20 min) and 
equivalent volumes of supernatant (S) and pellet (P) 
fractions were subjected to SDS-PAGE (15% gel) and 

stained with Coomassie. 

proaching saturation at >500 fig p36/ml. The 
double-reciprocal plot revealed that the apaprent 
K,,, for p36 was 2.5-3 PM and was unaffected by 
the level of Ca2+ (fig.2) but that the apparent I’,,,,, 
is greatly increased in the presence of Ca2+. 

To determine whether p36 binds directly to PS 
liposomes, we used a simple centrifugation assay. 
Whereas p36 was not pelleted with PC liposomes, 
it was sedimented with PS vesicles (fig.4). The co- 
sedimentation with PS liposomes was Ca2+ depen- 
dent (fig.4) and the concentration of Ca2+ needed 
to detect this interaction was in the 10-6-10-5 M 
range (not shown). 

4. DISCUSSION 

At least 2 other proteins are known to be 
modulated by Ca2+ with the Ca2+ sensitivity 
shifted by other effecters. The Ca2+-activated pro- 
tease calpain is composed of 2 chains, with one 
subunit modulating the Ca2+ sensitivity of the 
catalytic subunit [15]. The second example is pro- 
tein kinase C, in which the kinase is activated at 
high Ca2+ in the absence of lipid but is shifted to 
micromolar Ca2+ sensitivity in the presence of 
diacylglycerol and PS or PI [ 16,171. Previous 
studies with p36 have shown that it binds to 2 
cytoskeletal proteins, spectrin and actin, requiring 
millimolar Ca2+ for this interaction [10,12]. It 
seems likely that, as with Ca2+-stimulated 
phosphorylation, the interaction between p36 and 
actin or spectrin will be detectable at micromolar 
Ca2’ in the presence of PS or PI. 

Both in high Ca2+ (1 mM) and low Ca2+, a 
typical enzyme saturation curve is observed with 
an apparent Km identical in both cases at 2.5 ,uM. 
This compares favorably to the K,,, of acid-treated 
enolase with the FPS tyrosine kinase oncogene [ 181 
which has been reported to be in the micromolar 
range, with the native protein significantly higher 
[18]. The apparent I’,,,,, for p36 is quite different 
between high and low Ca2+ conditions (since the 
enzyme concentration was not known) which may 
point to a non-competitive type of inhibition under 
conditions of low Ca2+. Here, low pp60’” levels 
were used to detect changes in substrate kinetics 
and the resultant stoichiometry of phosphorylation 
was low (approx. 1%). Phosphorylation was only 
observed on a single tyrosine (fig.3) and other 
studies have shown that this is the same site used 
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in vivo [l]. In addition, increasing the pp60’” level 
increased the stoichiometry of phosphorylation 
(not shown). 
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