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BAY-k 8644, a mfedlpme analogue, promotes Ca2+ influx mto excitable cells via plasma membrane voltage- 
sensltlve Ca2+ channels. We report here that sarcoplasmlc reticulum (SR) Caz+ release channels are msensl- 
tlve to BAY-k 8644, as studled m highly punlied isolated fractions and m chemically skinned fibers of rabbit 
skeletal muscle This result suggests that a subcellular heterogeneity exists among Ca2+ channels, at least 
with respect to drug-receptor sites In the course of this study, however we found that BAY-k 8644 reversibly 
mhlblts the SR Ca2+ pump, 1 e , It decreases Ca2+ influx mto the SR lumen, although at concentrations 

(IC,,= 3-5 x 10ms M) much higher than those effective on voltage-sensltlve Ca2+ channels 

BA Y-k 8644 Sarcoplasmic reticulum Ca2+ release Ca2+ pump 

1. INTRODUCTION 

During the past few years, specific, voltage- 
sensitive Ca2+ channels (WCC) have been dis- 
covered m the plasma membrane of excitable cells 
(review [l]), and in transverse tubules (T-tubules) 
of skeletal muscle [2]. Transmembrane Ca2+ influx 
via VSCC can be specifically blocked by a group of 
compounds known as Ca2+ antagonists [3], e.g., 
verapamil, nifedipine and diltiazem. Recently, 
BAY-k 8644, a nifedipine analogue, has been 
found to have Ca2+ agonist properties, i.e., to in- 
crease the contractility of cardiac and smooth mus- 
cle, following stimulation of Ca2+ influx via VSCC 
[4], and to increase several-fold Ca2+ currents m 
skeletal muscle T-tubules [5 1. 

Skeletal muscle SR is an intracellular network of 
membranes which controls the contraction-relax- 
ation cycle by raising and lowering myoplasmlc 
Ca2+ concentration. Morphological studies [6] 
have shown that the SR membrane system consists 
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of two different portions, I.e., longitudmal tubules 
(LSR) and terminal cisternae (TC). Ca2+ efflux 
pathways (Ca2+ channels) for Ca2+ release follow- 
ing muscle excitation are selectively localized m TC 
[7,8]. On the other hand, the ATP-dependent Ca2+ 
pump [9] is uniformly distributed m the SR mem- 
brane, with the exceptlon of the junctlonal area 
with T-tubules [lo]. 

The results reported here indicate that Ca2+ 
channel agomst BAY-k 8644 has no effect on Ca2+ 
efflux from SR, and are consistent with the hypo- 
thesis that SR and plasma membrane Ca2+ chan- 
nels of skeletal muscle are different [ 11,121. On the 
other hand, BAY-k 8644 appears to be a potent, 
reversible mhibitor of the SR Ca2+ pump. 

2. EXPERIMENTAL 

2.1. Materrals 

BAY-k 8644 was a gift of Dr B. Garthoff (Bayer 
AG, Wuppertal, FRG). Antipyrylazo III was ob- 
tamed from Sigma, pyruvate kmase and lactate 
dehydrogenase from Boehrmger, and A23 187 
from Calbiochem. 
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2 2 SR lso~~tion 
SR was isolated from the fast-twnch skeletal 

muscles of New Zealand White male rabbits, and 
further fractionated mto LSR and TC by density 
gradient centrrfugation as described [3,14] SR 
fractions were resuspended m 0.3 M sucrose, 5 mM 
tmtdazole, pH 7.4, and stored at -70°C unttl 
used. Protein concentratton was determmed ac- 
cording to Lowry et al. [IS], using bovine serum 
albumin as standard 

2 3 ca2+ ioadrng and ~u2’-dependent ATPase 
actwrty of SR fructlons 

Ca2+ loading, m the presence of precrprtatmg 
anions, was measured using the Ca2+ mdtcator an- 
trpyrylazo III, by followmg A(710-790 nm) m a 
Perkm Elmer 356 spectrophotometer The assay 
was carrred out at room temperature (about 22V) 
in a medmm contammg, m a fmal volume of 1 ml, 
92 mM K-phosphate, pH 7 0, 200pM antrpyrylazo 
III, 1 mM MgSO+ 1 mM Na2ATP and 30 fig SR 
protein The reaction was started by addmg 50pM 
CaCl2 1161 

ATPase actrvmes were measured by a coupled- 
enzyme assay [17], followmg NADH oxrdatron at 
340 nm m a Perkm Elmer 55 1 S spectrophotometer 
The assay was carried out at 37°C m a medium 
contammg, m a fmal volume of 3 ml, 20 mM 
hrstrdme, pH 7.2,O. 1 M KCI, 5 mM MgS04, 2 mM 
ATP, 0 15 mM NADH, 0 5 mM phosphoenolpyru- 
vate, 5 U pyruvate kmase, 5 U lactate dehydro- 
genase and 5 or 15 fig of LSR and TC, protein, re- 
spectively Mg2+-dependent ATPase (basal AT- 
Pase) acttvrty was measured m the presence of 0.2 
mM EGTA. Ca2+-dependent ATPase was deter- 
mined as the drfference between total ATPase, 
measured m the presence of 0 2 mM CaCI2 
(estimated free Ca2+ = lOpM), and the basal AT- 
Pase. Maximal Ca2+-dependent ATPase actrvny 
was measured m the presence of Ca2+ ronophore 
A23187 (1 5pM) 

2.4. Skrnned fiber experrments 
Chemically skmned fibers were prepared from 

the adductor muscle of New Zealand Whrte male 
rabbits, by exposure to a ‘skmnmg solution’ con- 
taming 5 mM I’&EGTA, 0.17 M K-propronate, 2.5 
mM KzNazATP, 2.5 mM Mg-propronate and 10 
mM tmrdazole-propronate, pH 7.0 [ 13,181 After 
24 h at O”C, muscle bundles were transferred to 

skmmng solutton made up m 50% glycerol and 
stored at -20°C until used. 

Ca2+ loadmg m the presence of oxalate was 
measured by a light scattermg method [19] Ca2+ 
accumulatton mto the SR lumen ehcrts prectprta- 
non of Ca-oxalate crystals and increases fiber hght 
scattermg, which, after a lag phase, becomes hnear 
and proportronal to the amount of calcium ac- 
cumulated. Segments of skmned fibers were placed 
m a 0 6 ml chamber, attached to stamless-steel 
clamps and stretched to 130% of slack length m 
solution R (5 mM K2-EGTA, 0 17 M K-propro- 
nate, 2.5 mM Mg-propronate, 5 mM Na2K2ATP 
and 10 mM rmldazole propronate, pH 7 0) Fibers 
were then exposed to a pCa 6.4 solution (0 17 M 
K-propronate, 2.5 mM Mg-propronate, 5 mM 
NazKzATP, 2.15 mM CaC12,5 mM K2-EGTA and 
10 mM rmrdazole proptonate, pH 7 0), and Ca2+ 
loadmg was started by addmg 5 mM oxatate 

3. RESULTS 

3 1. BAY-k 8644 ~~~Ibzts Ca2+ loadrng by SR of 
skmned fibers 

Ftg. 1A shows, as momtored by a hght scattermg 
method, that BAY-k 8644 inhibited oxalate- 
facilitated Ca2” loading by the SR of single 
skinned skeletal muscle fibers (1C50 33 FM). The 
effect appeared to be reversible (fig lB), since the 

Fig 1 BAY-k 8644 mhrbrts Ca2+ loadmg by SR of 
chemlcaIIy skmned fibers Panel B shows a typlcal trace 
of Ca2+ loadmg by SR of smgle skmned fiber momtored 
by a lrght scattermg method The fiber was exposed to 
a pCa 6 4 solution, that, after 60 s, was supplemented 
with 5 mM oxalate Addltlon and removal of BAY-k 
8644 caused mhibitton and restoratlon of CaZf loadmg, 
respectively Panel A summarizes data obtamed from 
several experiments, as shown m B, on 5 different fibers 
Data are expressed as percentage of control rates, and 

fitted by lmear regresslon analysis (r= - 0 95) 
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removal of BAY-k 8644, after Ca2+ loading had 
been completely blocked by the drug (100 FM), 
restored the mitral rate of Ca2+ loading. 

To determine whether the inhibition was due to 
decrease of Ca2+ influx into the SR lumen, mediated 
by the Ca2+ pump, enhancement of Ca2+ efflux 
from the SR via specific Ca2+ channels, or both, 
we investigated the effect of BAY-k 8644 on 
isolated SR fractions. 

3.2. BA Y-k 8644 mhrbrts Ca2+ loadmg and Ca’+- 
dependent ATPase actwrty of LSR and TC 
fractions 

Fig.2 shows that BAY-k 8644 mhibned Ca2+ 
loading m both LSR and TC. LSR was more sen- 
sitive than TC fractions, the I& being 31 PM (fig. 
2B). Dose-response curves were similar to that 
observed with skinned fibers (fig lA), and m- 
dicated that Ca2+ loading decayed exponentially 
with first-order kinetics. 

Fig.3 shows that BAY-k 8644, at concentrations 
above 5 PM, likewise Inhibited Ca2+-dependent 
ATPase activity of TC and LSR fractions, to a 
similar extent, m the absence of Ca2+ ionophore 
A23187 (fig.3A; ICSO 32 and 30pM, respectively), 
as well as m its presence (fig.3B; I& 47 and 53 
PM, respectively). Since SR Ca2+-ATPase couples 
the hydrolysis of ATP to active Ca2+ transport [9], 
these results imply that the inhibition of Ca2+ 
loading by BAY-k 8644 is due to a direct effect on 

Fig 2. BAY-k 8644 mhlblts Ca*+ loading by SR frac- 
tlons. Ca*+-loading rate was measured usmg an- 
tlpyrylazo III as Ca*+ indicator Data were obtained on 
3 different SR preparations, are expressed as percentage 
of control rates, and fitted by hnear regression analysis 
(r= -0 85 and -0 96 m panel A and B, respectively). 
Control rates were 0 49-tO 22 and 4 95 + 0 78 pmol 
Ca2+/mm per mg protein for TC (A) and LSR (B), 

respectively 
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Flg.3. Effect of BAY-k 8644 on Ca*+-dependent 
ATPase actlvlty of SR fractions ATPase actlvltles were 
measured usmg an enzyme-coupled assay as described m 
sectlon 2. Data were obtamed on two different SR 
preparations, and are expressed as mean percentage of 
control actlvltles. In the absence of A23187, control ac- 
tlvltles of LSR (0) and TC (0) were 7.06 and 6 23 pmol 
P,/mm per mg protem, respectively In the presence of 
A23187 3(B), control activities of LSR (0) and TC (0) 
were 16 23 and 9.49 prnol P,/mm per mg protein, re- 
spectively Below 5 pM, BAY-k 8644 increased 
Ca*+-dependent ATPase actlvlty of both LSR and TC 
(A) by 20-30%, even though It mhlblted Ca2+ loading 
(see flg.2) At low concentrations, BAY-k 8644 mtght 
uncouple ATP hydrolysis from active Ca’+ transport 

the Ca2+ pump and the consequent reduced rate of 
Ca2+ influx mto the SR lumen. 

4. DISCUSSION 

Here we provide new evidence that BAY-k 8644 
is a reversible inhibitor of the Ca2+ pump of rabbit 
skeletal muscle SR. As compared to other Ca2+ 
pump inhibitors, BAY-k 8644 appears to be as po- 
tent as quercetm [20] and vanadate [21], although 
its mode of action remams to be elucidated. 

We also observed that BAY-k 8644 has no effect 
on SR Ca2+ release channels, and this confirms 
similar fmdmgs that Ca2+ antagonists have no ef- 
fect on SR Ca2+ channels [ 11,12,22]. Since the 
Ca2+ agonist BAY-k 8644 and the Ca2+ antagonist 
nifedrpine act competitively on VSCC [23], and 
skeletal muscle T-tubules VSCC are blocked by 
Ca2+ antagonists 1241 and activated by BAY-k 
8644 [5], it would appear that these channels and 
the SR Ca2+ release channels are different, at least 
with respect to their drug receptors [12], i e., there 
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is a Ca2+ channel heterogeneity accordmg to the 
type of subcellular membrane. 

In thts context tt is noteworthy that m skeletal 
muscles, sarcolemmal and SR Ca2+-ATPases [25] 
are heterogeneous with respect to: (1) molecular 
mass (140 vs 105 kDa); (11) vanadate sensitivity 
(1C50 1.7 vs ICSO > 50 PM); (in) regulatton by cal- 
moduhn (calmoduhn sensittvity vs calmodulin m- 
sensrtmty), and that the sarcolemmal and T-tubule 
Ca’+-ATPases also differ by some of these proper- 
ties 1251. Such a membrane spectfrclty of Ca’+- 
ATPases, as documented also for pig stomach 
smooth muscle [26], is in agreement wtth the 
relattve non-&sue spectftctty of plasma membrane 
CaZt-ATPases from several btologrcal sources 
[25-281. By analogy, our findings support the con- 
clusion that Ca2+ channels are also specific to the 
membrane type. 
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