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A new model is proposed based on the suggestion that stable local secondary structures of mRNA interfere 
with ribosome movement on mRNA and consequently reduce the translation rate. This model accounts 
for a different level of translation for each cistron in the polycistronic mRNA of Escherichia co/i heat-labile 
toxin (LT) and cholera toxin. We also conclude that the mRNA secondary structures have been conserved 

during the evolution of the toxin genes for its functional importance. 
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1. INTRODUCTION 

Reports on the regulation of bacterial gene ex- 
pression at the level of translation are ac- 
cumulating [ 1-5 1. However, this aspect of gene ex- 
pression remains imprecisely understood. E. co/i 
heat-labile enterotoxin (LT) and Vibrio cholerae 
enterotoxin (cholera toxin, CT) are final products 
from polycistronic operons which have evolved 
from a common ancestry [6]. In both cases the 
holotoxin consists of one molecule of subunit A 
(having an ADP-ribose transferase sequence) and 
five molecules of subunit B (having the ability to 
bind to the receptor) [7-91. In these operons, a 
single cistron has been identified for each subunit; 
the A cistron encoding subunit A is located prox- 
imal to the B cistron encoding subunit B [lo-131 
with a short overlapping sequence ATGA [ 14,15 1. 
Previous experiments with the LT operon have 
shown that more of subunit B is produced in E. 

coii minicells than of subunit A [16], suggesting 
that control of the formation of holotoxin (IASB) 
takes place mainly at the level of translation. This 

paper describes secondary structures of mRNA 
which could allow the B cistron to be translated 
more efficiently than the A cistron. 

2. METHODS 

The free energy of the optimal secondary struc- 
ture in a lOO-base-long sequence was calculated ac- 
cording to the method of Zuker and Stiegler [17] 
and using the free energy data compiled by Salser 
[18]. The free energy for a complex between a 
Shine-Dalgarno sequence and the complementary 
sequence at the 3 ‘-end of 16 S rRNA was also 
calculated using free energy values compiled by 
Salser [18]; in this calculation, chain association 
energy, which depends on a concentration of 
rRNA and mRNA, was assumed to be 0 kcal/mol. 
Frequency U, of use of optimal codons was 
calculated according to the method of Ikemura [2] 
using the data described in [19]: f = number of op- 
timal codons/sum of numbers of optimal and 
nonoptimal codons. 
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3. RESULTS AND DISCUSSION 

Ribosomes move on mRNA and there is a space 
between adjacent ribosomes. These free spaces on 
mRNA, which are unattached to ribosomes, are 
approx. 100 bases in length (kindly calculated by 
Dr Hideo Yamagishi, Kyoto University, Kyoto, us- 
ing the E. cofi data [20]). If intrastrand base- 
pairing takes place between invertedly aligned 
homologous sequences which are present within 
those unbound spaces on mRNA, the resultant 
secondary structures (e.g., stem-and-loop struc- 
tures) could interfere with ribosome movement on 
mRNA and consequently reduce the translation 
rate. This possibility was tested with the 
polycistronic mRNAs of LT and CT, by calcula- 
tion of a free energy. 

In the nucleotide sequences of the LT operon 
[ 10,131 and the CT operon [ 11,121, there exist 
many and various sequences which can potentially 
pair with each other to form stem-and-loop struc- 
tures (not shown). Fig.1 shows the free energy 
values calculated for such local secondary struc- 
tures from a running lOO-base-long nucleotide se- 
quence of the LT and CT operons. Stable local 
secondary structures were found predominantly in 
the A cistron and the average free energy of the 
local secondary structures in the A cistron was 
significantly lower than that for the local secon- 
dary structures in the B cistron. This was true for 
both the LT and CT operons. Moreover, even 
when the free energy was calculated for the secon- 
dary structures over a shorter sequence, of 50 bases 
in length, similar results were obtained. On 
average the free energy (kcal/mol) for the local 
secondary structures in the A and B cistrons was 
- 7.7 and - 4.7 for the LT operon and - 8.4 and 
-4.7 for the CT operon, respectively. These 
observations are consistent with the observed 
subunit composition (1ASB) in the holotoxin, and 
thus could be an important determinant of the dif- 
ferential rate of expression of each cistron in the 
polycistronic mRNAs of LT and CT. In addition, 
we conclude that this structural feature of mRNA 
has been conserved during the evolution of the tox- 
in (LT and CT) genes, as it plays an important role 
in the translational control. 

It has been reported that codon usage [2,19] and 
the Shine-Dalgarno sequence [21] are involved in a 
translational control. Data with those factors in 
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Fig.1. Free energy distribution of a local secondary 
structure along the nucleotide sequences of the LT 
operon (a) and the CT operon (b). The free energy of the 
secondary structures in a lOO-base-long sequence was 
plotted againsts the middle nucleotide position in the 
lOO-base-long sequence. This calculation was carried out 
repeatedly by sliding 10 nucleotides along the nucleotide 
sequences of the operons. A and B each represent 
cistrons of the respective subunits and the box indicates 
the position of the cistron. Horizontal lines represent 
average free energy values for the local secondary 
structures in the cistrons A and B. The positions of the 
RNA recognition sequence (- 35), Shine-Dalgarno 
sequence (SD) and possible rho-independent 
transcription termination signal, with a typical stem- 
and-loop structure, are indicated by an arrow and have 
been described in [10,13,14] in the case of the LT 
operon, and in [ 11,151 in the case of the CT operon. 

the case of the LT and CT operons are summarized 
in table 1. With respect to codon usage, no signifi- 
cant difference is confirmed between the A and B 

cistrons in terms of the frequency of use of the op- 
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Table 1 

Summary of sequence information affecting the translational expression 

Operon Cistrons Average free Frequency ma Shine-Dalgarno sequenceb 
(product) energy for local of use of (shown in large letters) 

secondary structures optimal codons and free energy for a 16 S 
(kcal/mol) rRNA complex (kcal/mol) 

CT 

LT toxA 
(subunit A) 

toxB 
(subunit B) 

ctxA 
(subunit A) 

ctxB 
(subunit B) 

Cloacin DF13 cl0 
(cloacin DF13) 

imm 
(immunity 

protein) 

- 19.6 0.38 

- 12.1 0.44 

-21.6 0.41 

- 14.3 0.40 

-21.8 0.58 

- 17.6 0.51 

-5.1 
toxA 

UAAGuuuuccucg 

16 S rRNA: 3’auuccucca 

-6.9 
toxB 

GGAaugaauu 

16 S rRNA: 
ceil 

3’ 
auu cca 

- 10.6 
ctxA 

AGGGAGcauuau laug( 

16 S rRNA: 
tiuccuc 

31a 
ca 

- 12.0 
ctxB 
- 

UAAGGAugaauu laugl 

16SrRNA: 3fauuccucca 

- 9.50 
cl0 
- 

AAGAGGaaaacgau m 

16 S rRNA: 
ilitcticc 

3,a c a 

- 13.4 
imm 

UAAGAGGUaaau laugl 
16 S rRNA: auticucca 

3’ c 

a The f values for the cistrons in the LT and CT operons have been described in [6]; in that paper, the f values were 
calculated using the data described in [2] 

b Shine-Dalgarno sequences have been described in [ 13,141 for LT, [15] for CT, and [24] for cloacin DF13 

timal codons; the frequency of use of the optimal 
codons is closely related to the amount of the gene 
product (protein) in E. coli [2]. In contrast, the 
Shine-Dalgarno sequence may play a role in the 
translation of the A and B cistrons at a different 
level. As shown in table 1, the A and B cistrons of 
LT and CT are preceded by a Shine-Dalgarno se- 
quence which can potentially pair with the com- 
plementary sequence at the 3’-end of 16 S rRNA 
[21]. In terms of the Shine-Dalgarno complemen- 
tarity, the sequence for the B cistron is more effi- 

cient than that for the A cistron (this has been 
pointed out previously [13,15]). However, we do 
not know at present how effectively this con- 
tributes to the differential control of translation of 
the A and B cistrons. In a certain instance [22,23], 
no direct correlation is found between the extent of 
the Shine-Dalgarno complementarity and the level 
of translation. 

Interestingly, even in the case of the 
polycistronic operon of cloacin DF13, secondary 
structures of mRNA could play an important role 
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in a translational control for each cistron (table 1); 
in the cloacin DF13 operon, the immunity protein- 
coding cistron (imm) is located distal to the cloacin 
DFl3-coding cistron (cfo) [24], and more immuni- 
ty protein is produced than cloacin DF13 [24,25]. 

The present data also suggest that, with respect 
to the in vitro synthesis of genes, to obtain max- 
imum gene expression at the level of translation it 
is important to minimize stable local secondary 
structures in the coding sequences. 
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