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Proteolysls of acetyl-CoA carboxylase was examined with cathepsm B When chlcken hver acetyl-CoA carb- 
oxylase was incubated with cathepsm B at pH 6 3, the native 220-kDa polypeptlde was prlmarlly cleaved 

mto two polypeptldes of 125 and 115 kDa, and further degraded to polypeptldes of 100-50 kDa 

Protem degradatzon Acetyl-CoA carboxylase Cathepsm B 

1. INTRODUCTION 

Acetyl coenzyme A carboxylase (acetyl-CoA: 
carbon dioxide ligase (ADP-forming), EC 6.4.2.1) 
plays a central role in the regulation of the fatty 
acid biosynthesis [1,2]. The hepatic content of 
acetyl-CoA carboxylase depends on both the rates 
of synthesis and degradation of the enzyme [ 1,3]. 
Although the synthetic rate of acetyl-CoA carbox- 
ylase varies under different metabolic conditions, 
the degradation rate of this enzyme is hardly 
changed by metabolic perturbations except nutri- 
tional depletion [ 1,3]. Recent studies suggested 
that lysosomal thiol proteinases, including cathep- 
sin B, H and L, play important roles in the 
degradation of endogenous proteins m the basal 
and nutritionally depleted states of cells [4-61. The 
degradation mechanisms of individual proteins, 
however, have been poorly understood. 

Our previous work has demonstrated that 
animal acetyl-CoA carboxylase is constituted of a 
unique multifunctional 220-230-kDa polypeptide 
[7,8]. It has also been shown that incubation of the 
native acetyl-CoA carboxylase isolated from rat 
liver with lysosomal extracts yields smaller 
polypeptides (100-130 kDa) [7]. Here, degrada- 
tion of acetyl-CoA carboxylase was investigated 
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with the most abundant thiol proteinase, cathepsin 
B (EC 3.4.22.1). 

2. MATERIALS AND METHODS 

Acetyl-CoA carboxylase from chicken liver was 
purified as described previously (81. The specific 
activity of the enzyme was 3.5 units/mg protein. 
Porcine kidney cathepsin B (type 1) was isolated 
according to [9]; the authentic sample was kindly 
donated by S. Takahashi of this institute. Specific 
activity of the enzyme was 4.3 units/mg protein as 
measured with a synthetic substrate, benzyloxycar- 
bonyl-phenylalanyl argmine-4-methyl-7-coumaryl- 
amide. Acetyl-CoA carboxylase (50ag) was in- 
cubated for 1 or 20 h with 5 pg of cathepsm B m 
a reaction mixture (0.1 ml) containing 0.1 M 
potassium phosphate buffer, 5 mM cysteine and 
2 mM EDTA, pH 6.3. The reaction was ter- 
minated by adding 25 ~1 of 10 pg/ml leupeptin. 
Aliquots (10~1) were removed from the reaction 
mixtures and treated with an equal volume of 2% 
SDS containing 8 M urea and 10% 2-mercapto- 
ethanol (v/v). The mixture was heated at 100°C 
for 2 min and subJected to 7.5% polyacrylamide 
gel electrophoresis (PAGE) in the presence of 
0.1% SDS as described previously [8]. The gel was 
stained by Coomassie brilliant blue R-250. Mole- 
cular masses of the polypeptides generated by 
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cathepsin B were determined with the standards 
from Bio-Rad, which are myosin heavy chain, p- 
galactosidase, phosphorylase b, bovine serum 
albumin and ovalbumm. Protem was determined 
by [lo] with bovine serum albumin as the standard. 

3. RESULTS AND DISCUSSION 

The properties of cathepsin B are not greatly dif- 
ferent among animal species [4]. Thus, the 
degradation of acetyl-CoA carboxylase from 
chicken liver was studied with porcine kidney 
cathepsin B. After the mcubation of native acetyl- 
CoA carboxylase with cathepsm B for 1 h, the 
native 220-kDa polypeptide almost disappeared 
and two polypeptides (125 and 115 kDa) were new- 
ly formed (fig.1). The prolonged mcubation for 
20 h resulted in the formation of additional 
smaller polypeptides (100-50 kDa). Therefore, the 
initial steps of the catheptic degradation of acetyl- 
CoA carboxylase seem to proceed in a sequential 
manner. The primary degradation products of the 
125 and 115-kDa polypeptides are quite similar to 
the polypeptides which have been found in the en- 
zyme preparations purified at pH 7.0-7.5 in the 
absence of protease inhibitors [7,8,11,12]. These 
polypeptides found in the animal acetyl-CoA car- 
boxylase preparations are likely due to the pro- 
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Fig. 1. SDS-PAGE of acetyl-CoA carboxylase digests by 
cathepsin B. For experimental details see section 2. 4 pg 
of acetyl-CoA carboxylase was run in each lane. Lane 1, 
marker proteins; lane 2, acetyl-CoA carboxylase without 
incubation, lane 3, acetyl-CoA carboxylase alone 
incubated for 20 h; lanes 4-6, the enzyme treated with 

cathepsm B for 0, 1 and 20 h, respectively. 

teolysis by cathepsin B, because cathepsin B ex- 
hibits a partial activity at neutral pH despite the 
pH optimum being 6.0-6.5, and additions of 
cathepsin B inhibitors, such as leupeptin and anti- 
pain [4,13] in the purification buffers markedly 
reduced the production of the smaller polypeptides 
tgl. 

Accumulated indirect evidence has suggested 
that cathepsin B may play an important role in the 
general catabolism of proteins in the lysosomal 
system [4]. Recently it has been clearly shown that 
30-45070 of the degradation of endogenous pro- 
teins in cultured macrophages and fibroblasts is in- 
hibited by a cathepsin B inhibitor [5,6]. Further- 
more, it has also been reported that the breakdown 
of pyruvate carboxylase in 3T3-Ll cells is inhibited 
by leupeptin [ 141. Therefore, available evidence 
suggests the possibility that cathepsin B has a role 
in the initial steps of the degradation of acetyl- 
CoA carboxylase in vivo. 
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