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Glucose-stimulated (pro)insulin biosynthesis 1s markedly inhibited 1s mouse pancreatic islets incubated with

micromolar concentrations of 2-5A “core’, (A2'p5S'A2'p5’A) Total protein synthesis was also reduced, but

to a lesser extent, while insulin release and total insulin content of the 1slets was untouched by 2-5A ‘core’
Evidence 1s given for the presence of a 2-5A-dependent endoribonuclease which mediates these effects

Insulin biosynthesis Oligoadenylate

1. INTRODUCTION

As 1s well known, 1n many cells interferon is
capable of inducing at least two enzyme systems in-
volved in setting up an antiviral state 1n the cell by
inhibiting the initiation of protein synthesis [1—4].
One such enzyme system is a dsRNA-dependent
oligoadenylate synthetase, which synthesises
2'-5'-linked oligoadenylates (2-5A) from ATP.
The major species of 2-5A is the trimer
pppA2'pS'A2'p5’ A, which acts as a secondary
messenger in activating an otherwise latent 2-5A-
dependent endoribonuclease which will degrade
cytoplasmic free mRNA and rRNA, to halt new
protein synthesis in the cell [S—7]. Here, the induc-
tion of 2-5A-dependent endoribonuclease by in-
terferon and dsRNA in isolated mouse pancreatic
islets has been studied in vitro.

Inhibition of protein synthesis by 2-5A itself,
has been observed in cell-free systems [8,9] at
nanomolar concentrations, mediated by 2-5A ac-
tivation of endoribonuclease [10]. 2-5A analogues
(co-precipitated with calcium phosphate to
facilitate uptake of 2-5A into cells), have also been
shown to inhlibit protein synthesis [11,12].
However, a non-triphosphorylated analogue of
2-5A, (A2'p5'A2'p5'A), known as 2-5A ‘core’ at
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micromolar concentrations has been shown to be
taken up by cells in vitro, and to inhibit protein
synthesis in non-permeabilised intact cells [13].
This 2-5A ‘core’ 1s probably internally
phosphorylated in the cell; it then activates the
2-5A-dependent endoribonuclease, which in turn
inhibits protein synthesis [14].

In some cells treated with relatively high concen-
trations of interferon, inhibition of the synthesis of
some 1nducible host cell protemns, including
glucose-stimulated (pro)insulin, has been observed
[15-19]. In this study the effect of exogenous 2-5A
core on isolated islets i vitro has been In-
vestigated, to compare its effects with those of in-
terferon [18,19].

2. EXPERIMENTAL

2.1. Assay of 2-5A endoribonuclease activity in
isolated islets

Pancreatic islets were isolated from fed male
DBA/2 mice, 10—12 wk old, under aseptic condi-
tions by collagenase digestion [20]. Groups of 100
islets were suspended 1n 1 ml of RPMI 1640 tissue
culture medium contamning glucose (2 mM),
penicillin (100 U/ml), streptomycin (0.1 mg/ml)
and 10% (v/v) heat inactivated foetal calf serum.
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Islets were incubated in this medium 1n the
presence of either 1000 U/ml S-interferon (Enzo
Biochem., New York) or 10 x#g/ml poly(I)- poly(C)
(PL Biochemicals, Northampton, England) or no
additions for control islets, for 24 h, at 37°C in a
COz-incubator. The islets were then washed in
20 mM Hepes buffer, and the islet cells broken
open using a Dounce homogeniser as described in
[21] to produce a cytoplasmic extract. 2-5A-
Dependent endoribonuclease activity in these islet
cell extracts was monitored as described else-
where [21], over a range of 2-SA trimer
(pppA2'p5'A2'pS’' A, PL Biochemicals) concen-
trations. Ribonuclease digestion of [8-*H]poly(A)
(Miles Laboratories, Slough, England) was
monitored in the presence and absence of 2-5A.
The remaining [8-*H]poly(A) after digestion was
extracted by oligo(dT) cellulose chromatography,
and counted. The ratio of counts in the presence of
2-5A to the counts in the absence of 2-5A was
calculated. If this ratio was below unity, 2-5A-
dependent endoribonuclease activity was present.

2.2. Incubation of 2-5A ‘core’ with isolated islets

Pancreatic islets were obtained as previously
described [20], and washed in bicarbonate buf-
fered medium [22] previously equilibrated with
95:5% 0O,:CO;, and containing glucose (2 mM)
and bovine serum albumin (1 mg/ml). Groups of
15 islets were placed in microfuge tubes suspended
in 150 x1 of this medium containing 2 mM glucose
and varying concentrations of 2-5SA ‘core’
(Calbiochem-Behring, Bishops Stortford, Eng-
land) and incubated at 37°C in a shaking water
bath for 30 min, with no 2-5A ‘core’ for controls.
At the end of this incubation, the islets were cen-
trifuged down at 1500 x g for 30 s and the medium
removed. The islets were then resuspended in
150 4l of fresh bicarbonate buffered medium, con-
taining the same concentration of 2-5A ‘core’ as 1n
the previous pre-incubation and varying concen-
trations of glucose between 2—-20 mM. Also pre-
sent was 0.1 mCi/ml L-[4,5-3H]leucine (Amer-
sham International) to monitor incorporation into
protein. The islets were then incubated a second
time at 37°C between 15-210 min. After this in-
cubation the islets were centrifuged down and the
supernatant removed for assay of insulin released
by radioimmunoassay [23]. (Residual [*H]leucine
present did not significantly interfere with this
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assay.) The islets were washed and then disrupted
by sonication, in 100 zl of phosphate buffered
saline. Aliquots of this sonicate were then assayed
for [*H]leucine incorporation nto trichloroacetic
acid-precipitable protein (total protein) and into
immunoextractable (pro)insulin [24]. No attempt
was made to distinguish between proinsulin and 1n-
sulin. Total insulin content [23] and DNA content
[25] were also determined in the sonicate. Results
are expressed in terms of islet DNA.

Statistically significant differences between
groups of results were analysed by Student’s #-test.

3. RESULTS

3.1. 2-5A-dependent endoribonuclease activity in
isolated 1slets

Significant 2-5A-dependent endoribonuclease

activity was detected 1n extracts of interferon
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Fig.1. 2-SA-dependent endoribonuclease activity 1n
control 1slets (0—0); 10 xg/ml poly(I) - poly(C) treated
islets (A---4); and 1000 U/m] S-interferon treated 1slets
(A---4A). Cytoplasmic extracts of the treated 1slets were
made and assayed for 2-5A-dependent endoribonuclease
(see section 2). Each point represents the mean + SE of
at least 5 observations. * Significance from the
equivalent control with at least p < 0.05 2-5A-
dependent endoribonuclease activity is expressed as a
ratio of residual radioactivity in tritiated poly A 1n the
presence and absence of 2-5A (see section 2).
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treated islets at 2 nM 2-5A concentrations and
above (fig.1). This activity appeared to reach a
maximum at 10 nM 2-5A. In dsRNA (poly(I)-
poly(C)) treated 1slets significant activity was pres-
ent at 25 nM 2-5A and above, but not as much as
seen in interferon treated islets. Negligible activity
was observed 1n control islets over the range of
2-5A concentrations assayed.

3.2. Effects of 2-5A ‘core’ on 1solated islets

At concentrations of 1.0 4M 2-5A ‘core’ and
above, 20 mM glucose-induced (pro)insulin
biosynthesis rate was significantly inhibited with
no effect on the basal rate at 2 mM-glucose (table
1) At these 2-5A ‘core’ concentrations, total pro-
tein biosynthesis was also reduced, but to a lesser
extent than that of glucose-induced (pro)insulin
biosynthesis. The rate of insulin release at basal or
stimulatory glucose concentrations was unaffected
at any concentration of 2-5A ‘core’ used, as was
total insulin content, within the 2 h assay incuba-
tion period (table 1).
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At stimulatory glucose concentrations (7 mM
and above), 10 4uM 2-5A ‘core’ treatment of islets
mhibited glucose induced (pro)insulin biosynthesis
(fig.2), with no significant effect at basal glucose
concentrations (2 and 4 mM). In further ex-
periments (not illustrated), the inhibitory effect
was evident in 10 4M 2-5A ‘core’ treated islets
after 15 min exposure to 20 mM glucose and this
effect continued for 210 min.

Only a slight reduction in the rate of total pro-
ten synthesis in 10 xM 2-5A ‘core’ treated islets
was observed after 60 min at glucose concentra-
tions above 10 mM. However, 2-5A ‘core’ had no
effect on the rate of insulin release at any glucose
concentration or incubation time.

4. DISCUSSION

Interferon is able to induce the 2-5A enzyme
system [1,4] in isolated islets from DBA/2 male
mice, since 2-5A-dependent activity was detectable
at nanomolar concentrations of 2-5A. It is uncer-

Table 1

Islet function after exposure to varying concentrations of 2-5A ‘core’

Concentration  Glucose Total protein (Pro)insulin Insulin release Total insulin
of 2-5A ‘core’ (mM) synthesis brosynthesis (pg/ug DNA content
M) (10° cpm/xg DNA  (10° cpm/ug DNA per min) (ng/xg DNA)
per h) per h)
0 2 132.2 + 11.1 (5) 1.2 £ 0.2 (5) 119.7 + 22.5 (5) 298.2 + 41.6 (5)
20 152.8 + 19.2 (5) 83+1.2(5 336 1 £ 29.5 (5) 322.1 x 48.7 (5)
0.01 2 120.6 + 13 0 (5) 1.0 + 0.2 (4) 118.6 + 17.6 (5) 289.3 + 30.2 (5)
20 152.9 + 6.4 (5) 8.1 + 1.3 (5) 300.2 + 23.4 (5) 271.4 + 363 (5)
01 2 117.1 = 7.9 (5) 1.1 +02(5) 1135 = 15.8 (5) 332.1 + 48.6 (5)
20 129.9 + 12.4 (5) 6.6 +12(5) 342.7 + 40.4 (5) 309.7 + 38.3 (5)
10 2 124.8 + 7 8 (5) 1.2 + 0.3 (4 96.3 = 16 0 (5) 318 6 + 42.9 (5)
20 118.6 + 11.0 (5)* 4.1 = 1.1 (5)* 311.8 + 51.2 (5) 326.9 + 50.7 (5)
100 2 93.2+ 505 1.1 = 0.2 (5) 101.5 = 8.5 (5) 284.3 + 36.5 (5)
20 1126 = 9.2 (5)° 4.0 + 0.8 (5)* 290.4 + 31.3 (5) 297.6 + 30.4 (5)

2 Significant difference from zero 2-5A ‘core’ concentration, with at least p < 0.05

Islets were pre-incubated with varying concentrations of 2-5A ‘core’ for 30 min at 2 mM glucose, then assayed for a

further 2 h incubation at 2 and 20 mM glucose 1n the presence of the same concentration of 2-5A ‘core’. Total protein

synthesis, (pro)insulin biosynthesis, insulin release and total insulin content were determined as decsribed 1n section 2
The results represent the mean = SE with the number of observations in parentheses
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Fig.2. (Pro)insuhn biosynthesis m islets incubated with
10 #M 2-5A ‘core’. Islets were preincubated with 10 xM
2-5A ‘core’ for 30 min at 2 mM glucose, then assayed
over a 2 h incubation at 2,4,7,10,15 and 20 mM glucose
concentrations (see section 2) The results of [*H]leucine
incorporation into (pro)mnsulin represent the mean + SE
of 5 observations. Control islets (O—-0); 10 zM 2-5A
‘core’ treated 1slets (A—a). * Significant difference
from the equivalent control, with p < 0.05.

tain whether poly(I)- poly(C) induces this enzyme
system 1n its own right, or whether 1t 1s inducing
islets to produce interferon [26], which in turn is
activating the 2-SA enzyme system. The sub-
strate specificity of this 2-5A-dependent en-
doribonuclease induced 1n islets in digesting
poly(A) is different to that observed 1n other cells,
where only poly(U) was digested [27].

Intact 1solated islet cells are able to take up 2-5A
‘core’ at micromolar concentrations. The 2-5A
‘core’ alone is unable to activate the 2-5A-
dependent endoribonuclease [12], but it has been

72

January 1985

suggested that once taken up, 2-5A ‘core’ 1s
phosphorylated and then can activate the en-
doribonuclease [14]. It has been shown that at any
early phase of glucose stimulation of isolated
islets, net synthesis of proinsulin-mRNA is not re-
quired for the stimulation of (pro)insulin biosyn-
thesis [28,29]. However, there is an increased
removal of cytoplasmic free proinsulin-mRNA to
membrane-bound polysomes, where proinsulin 1s
actively synthesised [28,29]. In isolated islets
treated with exogenous 2-5A ‘core’, the 2-5A-
dependent endoribonuclease may be activated [14].
This would then digest cytoplasmic free proinsulin-
mRNA, thereby reducing the glucose stimulation
of insulin biosynthesis.

As no new net protein synthesis is required for
normal glucose stimulated insulin release [30],
2-5A ‘core’ or 2-5A-dependent endoribonuclease
activity would not directly affect insulin release.
This endoribonuclease activity, in digesting RNA
slightly inhibits total protemn synthesis i 2-5A
‘core’ treated islets, but this does not sigmificantly
lower the total insulin content of the islets within
this limited time period.

In some islet cell tissue cultures treated with in-
terferon, the replication of a diabetogenic virus
was inhibited [31]. It is most likely that an
interferon-induced 2-5A-dependent endoribo-
nuclease activity is involved in this inhibition. Such
an activity would degrade viral RNA halting the
synthesis of more virus particles, and may be im-
portant 1n the protection against virus-induced
diabetes

We have already shown that interferon inhibits
insulin synthesis in 1slets [18,19]. The detection of
an endoribonuclease and the effects of 2-5A ‘core’
suggest that interferon may function through this
enzyme.
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