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Glucose-stimulated (pro)msuhn blosynthesls IS markedly mhlblted 1s mouse pancreatic islets incubated with 
micromolar concentrations of 2-5A ‘core’, (A2’pSA2’pSA) Total protein synthesis was also reduced, but 
to a lesser extent. while msuhn release and total msuhn content of the islets was untouched by 2-5A ‘core’ 

Evidence IS given for the presence of a 2-SA-dependent endonbonuclease which mediates these effects 

lnsuhn h~osyzthes~s Ohgoadenylate Interferon Islets of Langerhans Endorrbonuclease 

1. INTRODUCTION 

As 1s well known, m many cells interferon is 
capable of inducing at least two enzyme systems in- 
volved in setting up an antiviral state m the cell by 
inhibiting the initiation of protein synthesis [l-4]. 
One such enzyme system is a dsRNA-dependent 
oligoadenylate synthetase, which synthesises 
2 ’ -5 ’ -linked oligoadenylates (2-5A) from ATP. 
The maJor species of 2-5A is the trimer 
pppA2’pS1A2’p5’A, which acts as a secondary 
messenger in activating an otherwise latent 2-5A- 
dependent endoribonuclease which will degrade 
cytoplasmtc free mRNA and rRNA, to halt new 
protein synthesis in the cell [5-71. Here, the induc- 
tion of 2-SA-dependent endoribonuclease by in- 
terferon and dsRNA in isolated mouse pancreatic 
islets has been studied in vitro. 

Inhibition of protein synthesis by 2-5A itself, 
has been observed m cell-free systems [8,9] at 
nanomolar concentrations, mediated by 2-5A ac- 
ttvatton of endorlbonuclease [lo]. 2-5A analogues 
(co-precipitated with calcium phosphate to 
facilitate uptake of 2-5A into cells), have also been 
shown to inhibit protein synthesis [11,12]. 
However, a non-triphosphorylated analogue of 
2-5A, (A2’p5’A2’pS’A), known as 2-5A ‘core’ at 

micromolar concentrations has been shown to be 
taken up by cells in vitro, and to inhibit protein 
synthesis in non-permeabilised intact cells [13]. 
This 2-5A ‘core’ is probably internally 
phosphorylated in the cell; it then activates the 
2-SA-dependent endoribonuclease, which in turn 
inhibits protem synthesis [14]. 

In some cells treated with relatively high concen- 
trations of interferon, inhibition of the synthesis of 
some inducible host cell proteins, mcludmg 
glucose-stimulated (pro)insuhn, has been observed 
[ 15- 191. In this study the effect of exogenous 2-5A 
core on isolated islets m vitro has been m- 
vestigated, to compare its effects with those of m- 
terferon [18,19]. 

2. EXPERIMENTAL 

2.1. Assay of 2-5A endoribonuclease activity in 
isolated islets 

Pancreatic islets were isolated from fed male 
DBA/2 mice, IO-12 wk old, under aseptic condl- 
ttons by collagenase digestion [20]. Groups of 100 
islets were suspended m 1 ml of RPM1 1640 tissue 
culture medium containing glucose (2 mM), 
penicillin (100 U/ml), streptomycin (0.1 mg/ml) 
and 10% (v/v) heat inactivated foetal calf serum. 
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Islets were incubated in this medium m the 
presence of either 1000 U/ml &interferon (Enzo 
Biochem., New York) or 10 pug/ml poly(1). poly(C) 
(PL Biochemicals, Northampton, England) or no 
additions for control islets, for 24 h, at 37°C in a 
COZ-incubator. The islets were then washed in 
20 mM Hepes buffer, and the islet cells broken 
open using a Dounce homogeniser as described in 
[21] to produce a cytoplasmic extract. 2-5A- 
Dependent endoribonuclease activity in these islet 
cell extracts was monitored as described else- 
where [21], over a range of 2-5A trimer 
(pppA2 ’ p5 ’ A2 ’ p5 ’ A, PL Biochemicals) concen- 
trations. Ribonuclease digestion of [S-3H]poly(A) 
(Miles Laboratories, Slough, England) was 
monitored in the presence and absence of 2-5A. 
The remaining [8-3H]poly(A) after digestion was 
extracted by oligo(dT) cellulose chromatography, 
and counted. The ratio of counts in the presence of 
2-5A to the counts in the absence of 2-5A was 
calculated. If this ratio was below unity, 2-5A- 
dependent endoribonuclease activity was present. 

2.2. Incubation of 2-5A ‘core’ with isolated islets 
Pancreatic islets were obtained as previously 

described [20], and washed in bicarbonate buf- 
fered medium [22] previously equilibrated with 
95 : 5% 02: COZ, and containing glucose (2 mM) 
and bovine serum albumin (1 mg/ml). Groups of 
15 islets were placed in microfuge tubes suspended 
in 150 ~1 of this medium containing 2 mM glucose 
and varying concentrations of 2-5A ‘core’ 
(Calbiochem-Behring, Bishops Stortford, Eng- 
land) and incubated at 37°C in a shaking water 
bath for 30 min, with no 2-5A ‘core’ for controls. 
At the end of this incubation, the islets were cen- 
trifuged down at 1500 x g for 30 s and the medium 
removed. The islets were then resuspended in 
150 111 of fresh bicarbonate buffered medium, con- 
taining the same concentration of 2-5A ‘core’ as m 
the previous pre-incubation and varying concen- 
trations of glucose between 2-20 mM. Also pre- 
sent was 0.1 mCl/ml L-[4,5-‘Hlleucine (Amer- 
sham International) to monitor incorporation into 
protein. The islets were then incubated a second 
time at 37°C between 15-210 min. After this in- 
cubation the islets were centrifuged down and the 
supernatant removed for assay of insulin released 
by radioimmunoassay [23]. (Residual t3H]leucine 
present did not significantly interfere with this 

70 

assay.) The islets were washed and then disrupted 
by sonication, in 100 ~1 of phosphate buffered 
saline. Aliquots of this sonicate were then assayed 
for t3H]leucine incorporation mto trlchloroacetic 
acid-precipitable protein (total protein) and into 
lmmunoextractable (pro)insulin [24]. No attempt 
was made to distinguish between proinsulin and m- 
sulin. Total insulin content [23] and DNA content 
[25] were also determined in the somcate. Results 
are expressed in terms of islet DNA. 

Statistically significant differences between 
groups of results were analysed by Student’s t-test. 

3. RESULTS 

3.1. 2-SA-dependent endoribonuclease actrvlty in 
isolated islets 

Significant 2-SA-dependent endorlbonuclease 
activity was detected m extracts of interferon 
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Fig. 1. 2-SA-dependent endoribonuclease actlvlty m 
control islets (C--O); 10 /cg/ml poly(I) . poly(C) treated 
islets (A---A); and 1000 U/ml ,&mterferon treated islets 
(A---A). Cytoplasmlc extracts of the treated islets were 
made and assayed for 2-SA-dependent endorlbonuclease 
(see section 2). Each point represents the mean f SE of 
at least 5 observations. * Slgniflcance from the 
equivalent control with at least p < 0.05 2-5A- 
dependent endorlbonuclease actlvlty is expressed as a 
ratio of residual radloactlvlty in trltlated poly A m the 

presence and absence of 2-5A (see sectlon 2). 
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treated islets at 2 nM 2-5A concentratrons and 
above (fig.1). This activity appeared to reach a 
maximum at 10 nM 2-5A. In dsRNA (poly(I) - 
poly(C)) treated Islets significant activity was pres- 
ent at 25 nM 2-5A and above, but not as much as 
seen in interferon treated islets. Negligible activity 
was observed m control islets over the range of 
2-5A concentrations assayed. 

3.2. Effects of 2-5A ‘core’ on rsolated islets 
At concentrattons of 1.0 PM 2-5A ‘core’ and 

above, 20 mM glucose-induced (pro)insulin 
biosynthesis rate was significantly inhibited with 
no effect on the basal rate at 2 mM-glucose (table 
1) At these 2-5A ‘core’ concentrations, total pro- 
tein biosynthesis was also reduced, but to a lesser 
extent than that of glucose-induced (pro)insulin 
biosynthesis. The rate of insulin release at basal or 
strmulatory glucose concentrations was unaffected 
at any concentration of 2-5A ‘core’ used, as was 
total insulin content, within the 2 h assay incuba- 
tion period (table 1). 

At stimulatory glucose concentrations (7 mM 
and above), 1OpM 2-5A ‘core’ treatment of islets 
inhibited glucose induced (pro)insulin biosynthesis 
(fig.2), with no significant effect at basal glucose 
concentrations (2 and 4 mM). In further ex- 
periments (not illustrated), the inhibitory effect 
was evident in 10pM 2-5A ‘core’ treated islets 
after 15 mm exposure to 20 mM glucose and this 
effect contmued for 210 min. 

Only a slight reduction in the rate of total pro- 
tem synthesis in 10pM 2-5A ‘core’ treated islets 
was observed after 60 min at glucose concentra- 
tions above 10 mM. However, 2-5A ‘core’ had no 
effect on the rate of insulin release at any glucose 
concentration or incubation time. 

4. DISCUSSION 

Interferon is able to induce the 2-5A enzyme 
system [1,4] m isolated islets from DBA/2 male 
mice, since 2-SA-dependent activity was detectable 
at nanomolar concentrations of 2-5A. It is uncer- 

Table 1 

Islet functron after exposure to varying concentratrons of 2-5A ‘core’ 

Concentration Glucose Total protein (Pro)msulin Insulin release Total msuhn 
of 2-SA ‘core’ (mM) synthesis brosynthests (pg/pg DNA content 

OcM) (lo3 cpm/pg DNA (lo3 cpm/pg DNA per mm) (ngilcg DNA) 
per h) per h) 

0 2 132.2 f 11.1 (5) 1.2 + 0.2 (5) 119.7 f 22.5 (5) 298.2 f 41.6 (5) 
20 152.8 f 19.2 (5) 83 + 1.2(5) 336 1 f 29.5 (5) 322.1 k 48.7 (5) 

0.01 2 120.6 + 13 0 (5) 1.0 + 0.2 (4) 118.6 + 17.6 (5) 289.3 + 30.2 (5) 
20 152.9 + 6.4 (5) 8.1 + 1.3 (5) 300.2 f 23.4 (5) 271.4 f 36 3 (5) 

01 2 117.1 t- 7.9 (5) 1.1 f 02 (5) 113 5 + 15.8 (5) 332.1 f 48.6 (5) 
20 129.9 f 12.4 (5) 6.6 + 1 2 (5) 342.7 + 40.4 (5) 309.7 + 38.3 (5) 

10 2 124.8 f 7 8 (5) 1.2 + 0.3 (4) 96.3 + 16 0 (5) 318 6 f 42.9 (5) 
20 118.6 f 11.0 (5)a 4.1 + 1.1 (5)a 311.8 + 51.2 (5) 326.9 + 50.7 (5) 

10 0 2 93.2 + 5 0 (5)a 1.1 * 0.2 (5) 101.5 f 8.5 (5) 284.3 r?r 36.5 (5) 
20 112 6 + 9.2 (5)a 4.0 + 0.8 (5)= 290.4 f 31.3 (5) 297.6 + 30.4 (5) 

* Srgmftcant difference from zero 2-5A ‘core’ concentratton, wrth at least p < 0.05 

Islets were pre-incubated with varymg concentrattons of 2-5A ‘core’ for 30 mm at 2 mM glucose, then assayed for a 
further 2 h mcubation at 2 and 20 mM glucose m the presence of the same concentration of 2-5A ‘core’. Total protein 
synthesis, (pro)msuhn brosynthests, msulm release and total msuhn content were determined as decsrtbed in sectton 2 

The results represent the mean f SE with the number of observattons m parentheses 
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Glucose (mM) 

Frg.2. (Pro)insuhn brosynthesrs m islets incubated wrth 
10 PM 2-SA ‘core’. Islets were premcubated with 10 pM 
2-SA ‘core’ for 30 min at 2 mM glucose, then assayed 
over a 2 h incubation at 2,4,7,10,15 and 20 mM glucose 
concentratrons (see section 2) The results of [3H]leucme 
mcorporation into (pro)msuhn represent the mean f SE 
of 5 observations. Control Islets (C---+); 1OpM 2-5A 
‘core’ treated Islets (ti). * Significant difference 

from the equivalent control, with p < 0.05. 

tain whether poly(1) - poly(C) induces this enzyme 
system m its own right, or whether it 1s inducmg 
Islets to produce interferon [26], which in turn is 
activating the 2-5A enzyme system. The sub- 
strate specificity of this 2-SA-dependent en- 
doribonuclease induced m islets in digesting 
poly(A) is different to that observed m other cells, 
where only poly(U) was digested [27]. 

Intact isolated islet cells are able to take up 2-5A 
‘core’ at micromolar concentrations. The 2-5A 
‘core’ alone is unable to activate the 2-5A- 
dependent endoribonuclease [12], but it has been 

suggested that once taken up, 2-5A ‘core’ 1s 
phosphorylated and then can activate the en- 
doribonuclease [14]. It has been shown that at any 
early phase of glucose stimulation of isolated 
islets, net synthesis of promsulm-mRNA is not re- 
quired for the stimulation of (pro)insulin biosyn- 
thesis [28,29]. However, there is an increased 
removal of cytoplasmrc free proinsulin-mRNA to 
membrane-bound polysomes, where proinsulin 1s 
actively synthesised [28,29]. In isolated islets 
treated with exogenous 2-5A ‘core’, the 2-5A- 
dependent endorrbonuclease may be activated [ 141. 
This would then digest cytoplasmic free proinsulin- 
mRNA, thereby reducing the glucose stimulation 
of insulin biosynthesis. 

As no new net protein synthesis is required for 
normal glucose stimulated insulin release [30], 
2-5A ‘core’ or 2-SA-dependent endoribonuclease 
activity would not directly affect insulin release. 
This endoribonuclease activity, in drgestmg RNA 
slightly inhibits total protein synthesis m 2-5A 
‘core’ treated islets, but this does not significantly 
lower the total insulin content of the islets within 
this limited time period. 

In some islet cell tissue cultures treated with m- 
terferon, the replication of a drabetogemc virus 
was inhibited [31]. It is most likely that an 
interferon-induced 2-SA-dependent endoribo- 
nuclease activity is mvolved in this mhrbition. Such 
an activity would degrade viral RNA halting the 
synthesis of more virus particles, and may be im- 
portant m the protection against virus-induced 
diabetes 

We have already shown that interferon inhibits 
insulin synthesis in islets [18,19]. The detection of 
an endoribonuclease and the effects of 2-5A ‘core’ 
suggest that interferon may function through this 
enzyme. 
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