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The benzopyrene hydroxylase activity of the methylcholanthrene-inducible form of cytochrome P-450 
(P-448) has been studied in native and reconstituted liver microsomal membranes. The data obtained show 
that the molecular catalytic activity of membrane-bound cytochrome P-448 depends on the molar ratio of 
the cytochrome to NADPH-cytochrome P-450 reductase and that the optimal ratio for maximal activity 

of cytochrome P-448 in the microsomal membrane essentially differs from the equimolar one. 

Cytochrome P-450 3-Methylcholanthrene 3.4-Benzopyrene NADPH-cytochrome P-450 reductase 
Cytochrome P-448 antibody 

1. INTRODUCTION 

It is generally accepted that the oxidative activity 
of the cytochrome P-450-dependent microsomal 
monooxygenase system which catalyzes the oxida- 
tion of a wide range of endogenous substrates and 
xenobiotics of different chemical nature results 
from the interaction of multiple forms of 
cytochrome P-450 and NADPH-cytochrome P-450 
reductase [ 1,2]. 

It is known that liver microsomes contain 
cytochrome P-450 and NADPH-cytochrome P-450 
reductase at a molar ratio of 20: 1, which may in- 
crease to 30: 1 under the inducing influence of 
xenobiotics [3]. In contrast, kinetic studies of 
monooxygenase reactions during metabolism of 
xenobiotics using the reconstituted soluble (non- 
membranous) system have shown that the max- 
imum oxidative activity of the system is observed 
at an equimolar ratio of cytochrome P-450 and the 
reductase [4,5]. 

Abbreviation: MC, methylcholanthrene; BP, benzo- 
pyrene; PB, phenobarbital; 3-OH BP, 3-hydroxybenzo- 
pyrene 

Here, the molecular BP hydroxylase activity of 
the MC-inducible form of cytochrome P-450 
(P-448) in microsomal membrane has been deter- 
mined with the use of immunochemical techniques 
for quantitation of cytochrome P-448 and estima- 
tion of cytochrome P-448-dependent BP hydr- 
oxylase activity. The molar ratios of cytochrome 
P-448 and NADPH-cytochrome P-450 reductase 
giving maximal rates of cytochrome P-448- 
dependent BP hydroxylation in native and recon- 
stituted microsomal membranes have also been 
estimated. 

2. MATERIALS AND METHODS 

Microsomes were prepared from the livers of 
male Wistar rats by conventional differential cen- 
trifugation. The induction of microsomal enzymes 
was performed by intraperitoneal injections of 
3-MC (25 mg/kg body wt) for 3 days and PB 
(80 mg/kg body wt) for 4 days. 

Cytochrome P-448 was purified from MC- 
treated microsomes as in [6]. The preparations of 
cytochrome P-448 used in the experiments con- 
tained 16- 18 nmol per mg protein. 
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Antibodies to cytochrome P-448 were obtained 
from the sera of adult rabbits after immunization 
by the purified electrophoretically homogeneous 
cytochrome P-448 as recommended in [7]. 

Reconstituted microsomal membranes were ob- 
tained by self-assembly of liver microsomes 
solubilized in 4% sodium cholate during gel filtra- 
tion through Sephadex LH-20 [8]. The isolated 
cytochrome P-448 was incorporated into the 
reconstituted membranes by adding certain 
amounts of the enzyme to solubilized untreated or 
PB-treated microsomes with subsequent incuba- 
tion for 15 min at room temperature before 
chromatography on Sephadex LH-20 [9]. The 
membranes were also reconstituted from a mixture 
of the solubilized untreated and MC-treated 
microsomes. 

The total content of cytochrome P-450 was 
determined according to [lo]. The specific content 
of cytochrome P-448 was determined by rocket im- 
munoelectrophoresis [ 111. 

The activity of NADPH-cytochrome P-450 
reductase was measured by the reduction of 
cytochrome c [ 121. The reductase content in the 
microsomes and reconstituted microsomal mem- 
branes was determined from the enzyme’s 
molecular mass (78 kDa) and the maximal specific 
activity of the purified enzyme (60pmol 
cytochrome c reduced/min per mg protein) [ 131. 

3,4-BP hydroxylase activity was determined 
from the rates of 3-OH BP accumulation [ 151. The 
metabolism of 3,4-BP in the presence of antibodies 
to cytochrome P-448 was determined after 
preliminary incubation of microsomal prepara- 
tions with the antibodies for 10 min at 37°C [16]. 

Protein was determined as in [17]. 

3. RESULTS AND DISCUSSION 

To obtain microsomal membranes with different 
contents of cytochrome P-448 several approaches 
were used. One consisted of the time-dependent 
treatment of rats with 3-MC: the duration of the 
induction was 4, 8, 16 and 72 h. The other com- 
prised variations in the reconstitution of mem- 
branes from solubilized microsomes: purified 
cytochrome P-448 was incorporated into untreated 
or PB-treated microsomal membranes and the 
membranes were obtained from mixtures of un- 
treated and MC-treated microsomes solubilized in 

various proportions. We have previously shown 
that the main physicochemical properties of the 
reconstituted membrane-bound monooxygenase 
system and those of the native one are similar, in- 
cluding the rates of oxidation of xenobiotics. 
Thus, the activity of BP metabolism in 
reconstituted membranes was 85-100% of the 
native microsomes [8]. 

Preparations of native and reconstituted 
microsomal membranes were obtained with molar 
ratios of the MC-inducible form of cytochrome 
P-450 and NADPH-cytochrome P-450 reductase 
ranging from 2: 1 to 32: 1. 

To determine the catalytic activity of membrane- 
bound cytochrome P-448, antibody inhibition 
studies of BP metabolism were performed. The 
difference between the rate of inhibition by an ex- 
cess of antibodies to cytochrome P-448 and the 
uninhibited rates was attributed to cytochrome 
P-448. Cytochrome P-448 activity was calculated 
from the amount of metabolism inhibited by an- 
tibodies to cytochrome P-448 divided by the 
cytochrome P-448 content. 

Fig.1 shows that the highest BP hydroxylase ac- 
tivity of cytochrome P-448 was achieved when the 
molar ratio of cytochrome P-448 to NADPH- 
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Fig.1. BP hydroxylase activity of MC-inducible 
cytochrome P-448 in microsomal membranes with 
different molar ratios of cytochrome and NADPH- 
cytochrome P-450 reductase. (A) Native microsomes 
induced with MC, (0) reconstituted membranes from 
mixtures of untreated and MC-treated microsomes, (A) 
reconstituted from PB-treated microsomes with 
incorporated cytochrome P-448, (0) reconstituted from 
untreated microsomes with incorporated cytochrome 

P-448. 
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cytochrome P-450 reductase in microsomal mem- 
branes did not exceed 6: 1. There was no enhance- 
ment of BP hydroxylase activity in preparations 
with higher ratios due to increased cytochrome 
P-448 content. 

It has been shown that the dependence between 
the rates of oxidation of the substrates specific to 
a certain form of cytochrome P-450 and the molar 
ratio of this cytochrome form to NADPH- 
cytochrome P-450 reductase in non-membranous 
reconstituted systems is described by a parabolic 
curve, and that the maximum activity of the system 
is manifested at a 1: 1 ratio of the electron carriers 
[4,51. 

Our results demonstrate that in the membrane- 
bound monooxygenase system there are complete- 
ly different relationships between the rate of 
substrate metabolism and the molar ratio of a cer- 
tain form of cytochrome P-450 and NADPH- 
cytochrome P-450 reductase. The most effective 
metabolism of BP by cytochrome P-448 is ob- 
served at ratios of the cytochrome and reductase 
which differ greatly from the equimolar ratio of 
the carriers. 
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